Surviving Chemistry

Guided Study Book

High School Chemistry

2015 Revision

11

New York State Chemistry Regents Exams The Physical Setting

Effiong Eyo

ISBN : 978-151.487.1669

Surviving Enemistry

Cuided Study Book

High School Chemistry

Surviving Chemistry Books

Student and Teacher-friendly High School Books to:
\checkmark Excite students to study
\checkmark Engage students in learning
\checkmark Enhance students understanding

Surviving Chemistry

Guided Study Book

© 2015 by E3 Scholastic Publishing.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of E3 Scholastic Publishing.

ISBN-13: 978-1514871669

ISBN-10: 1514871661

Printed in The United States of America

e3Chemistry"

excite engage enhance
E3 Scholastic Publishing

Survivingchem.com

(877) 224-0484
info@e3chemistry.com

New York City Teachers

Our books are now listed on Famis E-catalog through Ingram

Vendor \#: ING032000
Contract \#: 7108108

§ิurvivingchemecom

\checkmark Get instant 40-page eBook previews to all of our books
\checkmark Buy hard copy prints and eBook editions at discounted prices
\checkmark Teachers and schools can buy eBook school-license

FREE EBOOK ACCESS

with
 all class-size orders.
 Our eBook is compatible on iPads, Android tablets, Smartphones, PCs and Laptops.

Topic 1 - Matter, Energy, and Change

Lesson 1: Types of Matter
Lesson 2: Phases of Matter and Temperature
Temperature Conversions Phase Change Diagrams
Lesson 3: Heat energy and Heat Calculations
Lesson 4: Characteristics of Gases
Lesson 5: Physical and chemical Properties of Matter

Topic 2 - The Periodic Table
 Pg 29-44

Lesson 1: Arrangement of the Elements
Lesson 2: Types of Elements and their Properties
Lesson 3: Groups of Elements and their Properties
Lesson 4: Periodic Trends

Topic 3 - Atomic Structure

Pg 45-68
Lesson 1: History of Atomic Models
Lesson 2: Structure of an Atom
Lesson 3: Location and Arrangement of Electrons
Electron Configuration
Ground and Excited States
Spectral Lines
Lesson 4: Valence Electrons and Ions

Topic 4 - Chemical Bonding
 Pg 69-90

Lesson 1: Chemical Bonding and Stability of Atoms
Lesson2: Chemical Bonding and Energy
Lesson 3: Types of Bonding between Atoms (Intramolecular Forces)
Metallic Bonds
Ionic Bonds
Covalent Bonds
Lesson 4: Types of Substances and their Properties
Lesson 5: Lewis Electron-dot Diagrams and Bonding
Lesson 6: Bonding between Molecules (Intermolecular Forces)

Topic 5 - Chemical Formulas and Equations

Pg 91-104
Lesson 1: Interpretation of Chemical Formulas
Lesson 2: Types of Chemical Formulas
Lesson 3: Chemical Nomenclature
Lesson 4: Chemical Reactions and Equations
Balancing Equations

Topic 6 - Stoichiometry: Mole Interpretations and Calculations

```
Lesson 1: Mole Interpretation and Calculation in Formulas
    Moles of Atoms
    Molar Calculations
    Percent Composition
    Percent Composition of Hydrates
    Empirical Formula from Percent Composition
    Molecular Formula from Mass and Empirical Formula
Lesson 2: Mole Interpretation and Calculation in Equations
    Mole to Mole Problems
    Volume to Volume Problems
    Mass to Mass Problems
```


Topic 7 - Solutions

Lesson 1: Properties of Solutions
Lesson 2: Solubility Factors
Lesson 3: Descriptions of Solution and the Solubility curves
Lesson 4: Expression of Concentration of Solutions
Molarity Calculations
Parts per Million Calculations
Lesson 5: Vapor Pressure
Lesson 6: Effect of Solutes on Physical Properties of Water

Topic 8 - Acids, Bases and Salts
Pg 141-152
Lesson 1: Properties and Definitions of Acids and Bases
Lesson 2: Reactions of acids and bases
Metal - Acid Reactions
Neutralization Reactions
Titration
Lesson 3: Salts and Electrolytes
Lesson 4: Naming Acids

Topic 9 - Kinetics and Equilibrium
Pg 153-176
Lesson 1: Kinetics
Lesson 2: Energy and Chemical Reactions
Potential Energy Diagrams
Lesson 3: Entropy
Lesson 4: Equilibrium
Physical Equilibrium
Chemical Equilibrium (Le Chatelier's Principle)

Table of Contents

Topic 10 - Organic Chemistry

Lesson 1: Characteristics of Organic Compounds
Lesson 2: Classes of Organic Compounds
Hydrocarbon Compounds
Functional Group Compounds
Lesson 3: Isomers
Lesson4: Organic Reactions

Topic 11 - Redox and Electrochemistry
 Pg 201-220

Lesson 1: Oxidation Numbers
Lesson 2: Redox (Oxidation-Reduction) Reactions
Lesson 3: Electrochemistry
Voltaic Cells
Electrolytic Cells
Lesson 4: Spontaneous Reactions
Topic 12 - Nuclear Chemistry
Pg 221-242
Lesson 1: Nuclear Transmutations
Natural Transmutation: Alpha decay, Beta decay, Positron emission
Artificial Transmutation
Lesson 2: Nuclear energy
Fission
Fusion
Lesson 3: Half-life

Topic 13 - Lab
Pg 243-251
Safety
Equipment
Measurements
Percent error
Significant figures

16 Days of Regents and Final Exam Practice	Pg 251-346
Reference Tables	Pg $347-358$
Glossary and Index	Pg $359-372$

Topic Outline

In this topic you will learn about these concepts:

- Types of Matter and their Characteristics
- Phases of Matter and their Characteristics
- Phase Changes and Energy
- Phase Change Diagrams
- Temperature
- Heat Energy and Heat Calculations
- Properties of Gases and the Gas Laws
- Physical and Chemical Properties and Changes

Lesson 1: Types of Matter

Introduction

Chemistry is the study of matter: its composition, structure, properties, changes it undergoes, and the energy accompanying these changes.
Matter is anything that has mass and takes up space. Matter, in other words, is "stuff." Matter can be grouped and classified as pure substances or mixtures.
In this lesson you will learn about the different types of matter and their characteristics. You will also learn to recognize different types of matter by chemical symbols and diagrams.

1. Pure Substances

A pure substance is a type of matter in which every sample has:

- Definite and fixed composition
- Same unique sets of properties
- Elements and compounds are classified as chemical pure substances.

Examples of Pure Substances

Elements

Compounds
Na (sodium)
Al (aluminum)
H_{2} (hydrogen)
He (helium)
$\mathrm{H}_{2} \mathrm{O}$ (water)
CO_{2} (carbon dioxide)
NH_{3} (ammonia)
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (sugar)

Practice 1

Carbon dioxide, CO_{2}, is classified as a pure substance because

1) its composition can vary
2) its composition is fixed
3) it cannot be separated
4) it can be separated

Practice 2

Which list consists only of chemical pure substances?

1) Soil and salt water
2) Air and water
3) Iron and sodium chloride
4) Sugar and concrete

2. Elements

An element is a pure substance that:

- is composed (made up) of identical atoms with the same atomic number.
- cannot be decomposed (or broken down) into simpler substances by physical or chemical methods.

Examples of Elements

Mg (magnesium) $\quad \mathrm{Br}_{2}$ (bromine) $\quad \mathrm{Au}$ (gold)
There are more than 100 known elements. Names, symbols, and other important information for all the elements can be found on the Periodic Table.

> LOGKing Ahead \longleftrightarrow Topic 2 - Periodic Table, you will learn more about the elements.

Practice 3

Which cannot be decomposed by physical or chemical methods?

1) HBr
2) Ni
3) $\mathrm{K}_{2} \mathrm{O}$
4) CO

Practice 4

Lithium is classified as an element because it is composed of atoms that

1) have the same mass
2) have different masses
3) have the same atomic number
4) have different atomic numbers

3. Compounds

A compound is a pure substance that:

- is composed of two or more different elements chemically combined
- has a definite composition (fixed ratio) of atoms in all samples
- can be decomposed into simpler substances by chemical methods
- has the same unique set of properties in all samples

Note: Properties of a compound are different from those of the elements in which it is composed.
Law of definite composition states that compounds contain two or more different atoms combined in a fixed ratio by mass. For an example: The mass ratio in a 9 gram sample of water, $\mathrm{H}_{2} \mathrm{O}$, is 8 g of O to 1 g H . The percent of H and O by mass in water is always $88.9 \% \mathrm{O}$ to $11.1 \% \mathrm{H}$. These ratio and percentages remain the same in all samples of water.

Examples of Compounds

$\mathrm{H}_{2} \mathrm{O}(l)$ (water)	$\mathrm{CO}_{2}(g)$ (carbon dioxide)
$\mathrm{NH}_{3}(g)$ (ammonia)	$\mathrm{NaCl}(s)$ (sodium chloride)

Similarities and differences between compounds and elements are noted below.

Compounds are similar to elements in that:

- both are pure substances
- both always have homogeneous properties
- both have fixed and definite composition in all samples

Compounds are different from elements in that :

- compounds can be broken down (decomposed) by chemical means
- elements cannot be decomposed

Practice 5

Which list consists only of substances that can be chemically decomposed?

1) $\mathrm{K}(s)$ and $\mathrm{KCl}(a q)$
2) $\mathrm{CO}(\mathrm{aq})$ and $\mathrm{CO}_{2}(g)$
3) $\mathrm{Co}(\mathrm{s})$ and $\mathrm{CaCl}_{2}(\mathrm{~s})$
4) $\mathrm{LiBr}(\mathrm{s})$ and $\mathrm{CCl}_{4}(l)$

Practice 6

Which change must occur for HF to form from its elements?

1) A physical change
2) A chemical change
3) A phase change
4) A nuclear change

Practice 7

MgO is different from Mg in that MgO

1) is a pure substance
2) has the same unique properties
3) can be chemically separated
4) can be physically separated

4. Mixtures

A mixture is a type of matter that:

- is composed of two or more substances that are physically combined
- has composition that can change (vary) from one sample to another
- can be physically separated into its components
- retains the properties of the individual components

Examples of Mixtures

$\mathrm{NaCl}(a q) \quad$ (salt water)
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$ (sugar solution) $\mathrm{HCl}(a q) \quad$ (hydrochloric acid solution)
Soil, concrete, and air are also mixtures
Similarities and differences between mixtures and compounds:
Mixtures are similar to compounds in that:

- both are composed (made up) of two or more different substances
- both can be separated into their components

Practice 8

Which is a mixture of substances?

1) $\mathrm{Cl}_{2}(g)$
2) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
3) $\mathrm{MgCl}_{2}(s)$
4) $\mathrm{KNO}_{3}(a q)$

Practice 9

Which is true of a KCl solution ?

1) It is composed of substances that are chemically combined.
2) It is composed of substances that are physically combined.
3) It is composed of substances with the same atomic number.
4) It is a pure substance.

Mixtures are different from compounds in that:

- Components of mixtures are physically combined, and the composition can change (vary). In compounds, they are chemically combined, and the composition is definite (fixed).
- Components of mixtures can be separated by physical methods. In compounds, they can be separated by chemical methods.
- Mixtures can be classified as homogenous or heterogeneous. Compounds can only be homogenous.

5. Homogeneous and Heterogeneous Mixtures

Homogeneous mixtures

A mixture is classified as homogeneous if it has the following properties:

- The components of the mixture are uniformly and evenly mixed throughout
- Samples taken within the same mixture have the same composition

Aqueous solutions are homogeneous mixtures made with water.
For an example, a scoop of salt that is completely dissolved in a cup of water makes an aqueous solution. (aq) next to a chemical symbol indicates an aqueous mixture of that substance.

Sample 1 and Sample 2 have the same composition.

Examples

$\mathrm{NaCl}(a q)$ and $\mathrm{CO}_{2}(a q)$
LOQKing Ahead \quad Topic 7 - Solutions. You will learn more about aqueous solutions.

Heterogeneous mixtures

A mixture is classified as heterogeneous if:

- The components of the mixture are not uniformly mixed throughout
- Samples taken within the same mixture have different compositions

Examples

Concrete, soil, and salt-in-sand mixture.

Sample 1 and Sample 2 have different compositions.

Homogeneous mixture

Salt solution

Particles of salt:\% and water are evenly and uniformly mixed

7. Separation of Mixtures

Substances that make up a mixture can be separated by various physical methods because the substances are physically combined, and each retains its physical properties. Methods of separation depend on the physical characteristics of each substance in the mixture, as well as if the mixture is homogeneous or heterogeneous.

Separation of Homogeneous Mixtures

Distillation is a process of separating components of a homogeneous mixture (solution) by using differences in their boiling points. In a distillation process, a sample of a mixture is placed and heated in a distillation apparatus. As the boiling point of a substance in the mixture is reached, the substance will boil and evaporate out of the mixture. The substance with the lowest boiling point will boil and evaporate out first, and the substance with the highest boiling point will boil and evaporate out last. As each substance boils and evaporates out, it can be condensed back to liquid and collected in separate containers.
Examples of mixtures that can be separated by distillation include:

- Water and alcohol mixture.
- Crude oil (a mixture of gases; methane, ethane, propane. etc.).
- Salt-water mixture can be separated by boiling off the water and leaving the salt behind.
Chromatography is a process of separating substances of a homogeneous mixture by first dissolving the mixture in a solvent (mobile phase), and then allowing the substances in the mixture to move through a stationary phase.
In gas chromatography, a sample of a mixture is placed in an equipment that vaporizes the components of the mixture so they can move through a series of columns packed with stationary phase chemicals. Components of the mixture will move through the columns at different speeds (rates), and can be detected and analyzed as they exit the columns. Gas chromatography is often used to analyze the purity of a mixture.
In paper chromatography, a sample of a mixture is dissolved in a solvent (moving phase), and each component of the mixture will move up the chromatograph paper (stationary phase) at different rates. The height and other characteristics of each mark (blot) on the paper can be analyzed and used to identify the different components of the mixture. Pigment or ink separation is often done by paper chromatography.

Separation of Heterogeneous Mixtures.

Decantation (pouring) is a simple process of separating a heterogeneous mixture in which the components have separated into layers. Each layer of the mixture can be poured out and collected one by one. Immiscible liquids (liquids that do not mix well or evenly) are often separated by decantation. A mixture of water and oil can be separated by this method.

Filtration

Filtration is a process that can be used to separate a liquid mixture that is composed of substances with different particle sizes. A filter is an equipment with holes that allows particles of a mixture that are smaller than the holes to pass through, while particles that are bigger than the holes are kept on the filter. A mixture of saltwater and sand can be separated using a filtration process. The aqueous components (salt and water) will go through the filter paper because molecules of water and particles of salt are smaller than the holes of a filter. The sand component of the mixture will stay on the filter because sand particles are generally larger than the holes of a filter paper.

A filtration setup

SurvivingChem.com

8. Types of Matter: Practice Questions

Practice 10

Which type of matter can be separated only by physical methods?

1) A mixture
2) An element
3) A pure substance
4) A compound

Practice 11
Which two types of matter are chemical pure substances?

1) Elements and compounds
2) Elements and mixtures
3) Solutions and compounds
4) Solutions and mixtures

Practice 12
Which type of matter is composed of two or more different atoms chemically combined in a definite ratio?

1) A homogeneous mixture
2) A heterogeneous mixture
3) A compound
4) An element

Practice 13

The formula $\mathrm{N}_{2}(g)$ is best classified as a(n)

1) compound
2) mixture
3) element
4) solution

Practice 14

When $\mathrm{NaNO}_{3}(\mathrm{~s})$ is dissolved in water, the resulting solution is classifies as a

1) heterogeneous compound
2) heterogeneous mixture
3) homogeneous compound
4) homogeneous mixture

Practice 15

One similarity between all mixtures and compounds is that both

1) are heterogeneous
2) combine in definite ratio
3) are homogeneous
4) consist of two or more substances

Practice 16

Two substances, X and Y, are to be identified. Substance X cannot be broken down by a chemical change. Substance Y can be broken down by a chemical change. What can be concluded about these substances?

1) X and Y are both elements
2) X and Y are both compound
3) X is an element and Y is a compound
4) X is a compound and Y is an element

Practice 17

Bronze contains 90 to 95 percent copper and 5 to 10 percent tin. Because these percentages can vary, bronze is classified as a(n)

1) compound
2) substance
3) element
4) mixture

Practice 18

When sample X is passed through a filter a white residue, Y, remains on the filter paper and a clear liquid, Z, passes through. When liquid Z is vaporized, another white residue remains. Sample X is best classified as

1) a heterogeneous mixture
2) an element
3) a homogeneous mixture
4) a compound

Practice 19

A mixture of crystals of salt and sugar is added to water and stirred until all solids have dissolved. Which statement best describes the resulting mixture?

1) The mixture is homogeneous and can be separated by filtration.
2) The mixture is homogeneous and cannot be separated by filtration.
3) The mixture is heterogeneous and can be separated by filtration.
4) The mixture is heterogeneous and cannot be separated by filtration.

9. Diagram Representations of Matter

Diagrams can be used to show compositions of elements, compounds and mixtures
Examples are given below.
Concept Task: Be able to recognize a diagram that shows an element, a compound, or a mixture.

Examples

Given the following symbols:

Atom X	Atom Y
O	\bullet

Elements

The diagrams below represent elements because the composition in each diagram consists of identical atoms.

∞	∞
∞	∞

A diatomic element X

A monatomic element Y

Compounds

The diagrams below represent compounds because each consists of identical units, and each unit is composed of different atoms that are touching to show chemical bonding between the atoms.

A compound composed of one atom X and one atom Y (Five identical units of O)

A compound composed of two Y atoms and one X atom (Six identical units of Cl°)

Mixtures

The diagrams below represent mixtures because each consists of two or more different units. One unit is not touching the other to show physical combination between the different units).

∞	∞	\bullet
\bullet	\bullet	∞
∞	∞	\bullet

A mixture of diatomic element X and monatomic element Y

A mixture of compound $X Y$ and element Y .

Given diagrams A, B, and C below:
Answer practice questions 13 to 15
based on the diagrams.

$O=$ particle X
$O=$ particle Y

Practice 20
Which diagram or diagrams represents a compound of X and Y

1) A and B
2) A and C
3) A only
4) B only

Practice 21

Which diagrams represent chemical pure substances?

1) A and B
2) B and C
3) A and C
4) A, B and C

Practice 22

Which best describes diagram B?

1) It is a mixture composed of physically combined substances.
2) It is a mixture composed of chemically combined substances.
3) It is a compound composed of physically combined substances.
4) It is a compound composed of chemically combined substances.

Introduction

Lesson 2 - Phases of Matter

There are three phases of matter: solid, liquid and gas. The fourth phase of matter, plasma, is not commonly discussed in high school chemistry.
The type of a substance determines the phase in which it will exist under normal conditions. For an example, gold will always be a solid at room temperature $\left(23^{\circ} \mathrm{C}\right)$. At the same room temperature, water will always be a liquid, and oxygen will always be a gas.
Most substances can change from one phase to another. The type of a substance also determines the conditions (temperature and/or pressure) that it will change from one phase to another.
In this lesson you will learn about the three phases of matter. You will also learn about phase changes and how they relate to temperature and energy.

10. Phases of Matter

The notes below define and summarize characteristics of substances in the three phases.
The diagrams show particle arrangements of water in the three phases.
Solid(s): A substance in the solid phase has the following characteristics:

- Definite volume and definite shape
- Particles arranged orderly in a regular geometric pattern
- Particles vibrating around a fixed point
- Particles with strong attractive forces to one another
- Particles that cannot be easily compressed (incompressible)

Liquid(l): A substance in the liquid phase has the following characteristics:

- Definite volume but no definite shape (It takes the shape of its container)
- Particles that are less orderly arranged than those in the solid phase
- Particles with weaker attractive forces than those in the solid phase
- Particles that flow over each other
- Particles that cannot be easily compressed (incompressible)

Orderly and regular geometric arrangement of particles in solid phase

Gas(g): A substance in the gas phase has the following characteristics:

- No definite volume and no definite shape (it takes volume and shape of its container)
- Particles far less orderly arranged (most random)
- Particles that move fast and freely throughout the space of the container
- Particles with very weak attractive forces to each other
- Particles that can be easily compressed (compressible)

11. Phases of Matter: Practice Problems

Practice 23

In which phase does a substance has a definite volume but no definite shape?

1) Aqueous
2) Solid
3) Liquid
4) Gas

Practice 24

Substance X is a gas and substance Y is a liquid. One similarity between substance X and substance Y is that

1) both have definite shape
2) both have definite volume
3) both are compressible
4) both take the shapes of their containers

Practice 25

Which of the following substances have particles that are arranged in regular geometric pattern?

1) $\mathrm{Al}(\mathrm{s})$
2) $\operatorname{Ar}(g)$
3) $\mathrm{CCl}_{4}(e)$
4) $\mathrm{NH}_{3}(a q)$

Practice 26

Which substance takes the space and shape of its container?

1) Gold
2) Water
3) Iron
4) Hydrogen

12. Phase Changes

During a phase change a substance changes its form (or state) without changing its chemical compositions. Therefore, a phase change is a physical change. Any substance can change from one phase to another given the right conditions of temperature and/or pressure. Most substances require a large change in temperature to go through one phase change. Water is one of only a few chemical substances that can change through all three phases within a narrow range of temperature change.

Phase changes and example equations representing each change are given below.

Fusion (also known as melting) is a change from solid to liquid.
Freezing is a change of phase from liquid to solid
Evaporation is a change of phase from liquid to gas
Condensation is a change of phase from gas to liquid
Deposition is a change of phase from gas to solid
Sublimation is a change of phase from solid to gas

$$
\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)
$$

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(g)
$$

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)
$$

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s})
$$

$$
\mathrm{CO}_{2}(s) \rightarrow \mathrm{CO}_{2}(g)
$$

NOTE: $\mathrm{CO}_{2}(\mathrm{~s})$, carbon dioxide solid (dry ice), and $\mathrm{I}_{2}(\mathrm{~s})$, iodine solid, are two chemical substances that readily sublime at room temperature because of the weak intermolecular forces holding their molecules together. Most substances do not sublime.

13. Phase Change and Energy

Each of the six phase changes defined above occurs when a substance has absorbed or released enough heat energy to rearrange its particles (atoms, ions or molecules) from one form to another. Some phase changes require a release of heat by a substance, while other phase changes require heat to be absorbed.

Endothermic describes a process that absorbs heat.
Fusion, evaporation and sublimation are endothermic phase changes.

Exothermic describes a process that releases heat.
Freezing, condensation and deposition are exothermic phase changes.

A summary diagram of the phase changes and energy is shown below.

14. Phase Change and Energy: Practice Problems

Practice 27

Which phase change equation is exothermic?

1) $\mathrm{N}_{2}(\mathrm{l}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})$
2) $\mathrm{CH}_{4}(g) \rightarrow \mathrm{CH}_{4}(l)$
3) $\mathrm{Hg}(\mathrm{s}) \rightarrow \mathrm{Hg}(\ell)$
4) $I_{2}(s)$
\rightarrow
$\mathrm{I}_{2}(\mathrm{~g})$

Practice 28

Which equation is showing the sublimation of iodine?

1) $\mathrm{I}_{2}(g) \rightarrow \mathrm{I}_{2}(\mathrm{~s})$
2) $I_{2}(s) \rightarrow I_{2}(g)$
3) $I_{2}(s) \rightarrow I_{2}(e)$
4) $\mathrm{I}_{2}(g) \rightarrow \mathrm{I}_{2}(\mathrm{l})$

Practice 29

$$
\mathrm{NH}_{3}(g) \rightarrow \mathrm{NH}_{3}(s)
$$

The change represented above is

1) sublimation
2) condensation
3) evaporation
4) deposition

Practice 30

Heat will be absorbed by a substance when it changes from

1) solid to gas
2) gas to solid
3) liquid to solid
4) gas to liquid

Practice 31

Which is true of ethanol as it changes from the liquid state to the gas state?

1) It absorbs heat as it condenses
2) It absorbs heat as it evaporates
3) It releases heat as it condenses
4) It releases heat as it evaporates

15. Temperature

Temperature is a measure of the average kinetic energy of particles in a substance.
Kinetic energy is the energy due to the movement of particles in a substance.

- The higher the temperature of a substance, the greater its kinetic energy
- As temperature increases, the average kinetic energy also increases

A thermometer is an equipment for measuring temperature. Degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ and Kelvin (K) are the two most common units for measuring temperature. The mathematical relationship between Celsius and Kelvin is given by the equation:

$$
\mathbf{K}={ }^{\circ} \mathbf{C}+\mathbf{2 7 3} \quad \text { See Reference Table } T
$$

According to this equation, the Kevin temperature value is always 273 higher than the same temperature in Celsius.

Creating a thermometer scale of any unit requires two fixed reference points. The freezing point ($0^{\circ} \mathrm{C}, 273 \mathrm{~K}$) and the boiling point $\left(100^{\circ} \mathrm{C}, 373 \mathrm{~K}\right)$ of water are often used as the two reference points in creating a thermometer scale. Once the two reference points are marked on a thermometer, equal units are scaled and marked between the two points.

Important temperature points at normal pressure

Copyright © 2015 E3 Scholastic Publishing. All Rights Reserved.

16. Temperature Conversion: Practice Problems

Concept Task: Be able to convert temperature between Celsius and Kelvin.

$$
K={ }^{\circ} C+273
$$

Practice 32

Which Celsius temperature is equivalent to +20 K ?

1) -253
2) -293
3) +253
4) +293

Practice 33

The temperature of $-30^{\circ} \mathrm{C}$ is the same as

1) 30 K
2) 303 K
3) 243 K
4) 70 K

Practice 34

What is the equivalent of 546 K on a Celsius scale?

1) $273{ }^{\circ} \mathrm{C}$
2) $818^{\circ} \mathrm{C}$
3) $-273^{\circ} \mathrm{C}$
4) $546{ }^{\circ} \mathrm{C}$

Practice 35

A liquid's freezing point is $-38^{\circ} \mathrm{C}$ and its boiling point is $357^{\circ} \mathrm{C}$. What is the number of Kelvin degrees between the boiling and the freezing point of the liquid?

1) 319
2) 668
3) 592
4) 395

Practice 36

Heat is being added to a given sample. Compared to the Celsius temperature of the sample, the Kelvin temperature will

1) always be 273° lower
2) always be 273° greater
3) have the same reading at $273^{\circ} \mathrm{C}$
4) have the same reading at $0^{\circ} \mathrm{C}$

17. Temperature and Kinetic Energy: Practice Problems

Concept Task: Be able to determine which temperature has the highest or lowest kinetic energy.
Recall: The higher the temperature, the higher the kinetic energy.

Practice 37

Which substance contains particles with the highest average kinetic energy?

1) $\mathrm{NO}(\mathrm{g})$ at $40^{\circ} \mathrm{C}$
2) $\mathrm{NO}_{2}(\mathrm{~g})$ at $45^{\circ} \mathrm{C}$
3) $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ at $30^{\circ} \mathrm{C}$
4) $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})$ at $35^{\circ} \mathrm{C}$

Practice 38

Which water sample has molecules with the lowest average kinetic energy?

Practice 39
Which change in temperature is accompanied by the greatest increase in the average kinetic energy of a substance?

1) $-20^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$
2) $15^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$
3) $-25^{\circ} \mathrm{C}$
to $30^{\circ} \mathrm{C}$
4) $30^{\circ} \mathrm{C}$ to $-25^{\circ} \mathrm{C}$

Practice 40

A sample of substance X can change from one temperature to another. Which change will result in the highest increase in the average kinetic energy of the molecules?

1) 250 K to $-10^{\circ} \mathrm{C}$
2) 300 K to $57^{\circ} \mathrm{C}$
3) 400 K to $100^{\circ} \mathrm{C}$
4) 100 K to $-60^{\circ} \mathrm{C}$

18. Phase Change Diagrams: Understanding phase change diagrams

A phase change diagram shows the relationship between temperature and phase changes of a substance over a period of time as the substance is heating or cooling.
The two phase diagrams are the heating and cooling curves.

Heating curve:

- Shows changes of a substance starting with the substance in a more organized state (ex. from solid)
- Shows temperature changes of a substance as heat is being absorbed (endothermic process)

Cooling curve

- Shows changes of a substance starting with the substance in a less organized state (ex. from gas)
- Shows temperature changes of a substance as heat is being released (exothermic process)

During segments S, L and G.

- One phase is present
- Temperature increases
- Kinetic energy increases
- Potential energy stays the same

During segments S / L and L / G

- Two phases are present
- Temperature stays the same
- Kinetic energy stays the same
- Potential energy increases

The substance represented by this curve is likely water.

During segments G, L and S.

- One phase is present
- Temperature decreases
- Kinetic energy decreases
- Potential energy stays the same

During segments S / L and L / G

- Two phases are present
- Temperature stays the same
- Kinetic energy stays the same
- Potential energy decreases

The substance represented by this curve is not water.

19. Phase Change Diagrams: Practice Problems

Concept Task: Be able to identify boiling, freezing, and melting points on a phase change diagram.

Practice questions 41-43 are based on graph below, which represents a uniform heating of a substance, starting with the substance as a solid below its melting point.

41. What is the melting point of this substance?

1) $0^{\circ} \mathrm{C}$
2) $60^{\circ} \mathrm{C}$
3) $12^{\circ} \mathrm{C}$
4) $100^{\circ} \mathrm{C}$
42. What is the boiling point of the substance?
1) $100^{\circ} \mathrm{C}$
2) $12^{\circ} \mathrm{C}$
3) $60^{\circ} \mathrm{C}$
4) $0^{\circ} \mathrm{C}$
43. The freezing point of the substance is
1) $100^{\circ} \mathrm{C}$
2) $60^{\circ} \mathrm{C}$
3) $0^{\circ} \mathrm{C}$
4) $12^{\circ} \mathrm{C}$

Concept Task: Be able to relate energy to a phase change diagram.
Practice questions 47-48 are based on graph below, which shows the uniform heating of a substance, starting with the substance as a solid below its melting point.

47. Which portions of the graph represent times when kinetic energy is increasing while potential energy remains constant?

1) $A B, C D$, and $E F$
2) $A B, B C$, and $C D$
3) $B C$ and $D E$
4) $C D$ and $E F$
48. Between which time intervals can the heat of fusion be determined?
1) t_{o} and t_{1}
2) t_{1} and t_{2}
3) t_{2} and t_{4}
4) t_{3} and t_{4}

Concept Task: Be able to identify phase segments on a phase change diagram.
Practice questions 44-46 are based on diagram below, which represents the relationship between temperature and time as heat is added at a constant rate to a substance, starting when the substance is a gas above its boiling point.

44. The liquid phase of the substance is represented by segment

1) $B C$
2) $D E$
3) $C D$
4) EF
45. Liquid-solid equilibrium of the substance is represented by which segment of the curve?
1) BC
2) $A B$
3) EF
4) DE
46. During which segment or segments does the substance exist in one phase?
1) $A B$ only
2) $B C$ only
3) $A B$ and $C D$, only
4) $A B, C D$ and

Concept Task: Be able to interpret phase change data.

${ }_{\text {(mime }}^{\text {(mimites) }}$	${ }_{\text {Temperature }}^{\text {¢ }}$
	65 $\left.\begin{array}{l}68 \\ 52 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 51 \\ 47 \\ 48\end{array}\right]$

Practice questions 49-50 are based on the data table below, which was collected as a substance in the liquid state cools.
49. Which temperature represents the freezing point of this substance?

1) $65^{\circ} \mathrm{C}$
2) $42^{\circ} \mathrm{C}$
3) $47^{\circ} \mathrm{C}$
4) $53^{\circ} \mathrm{C}$
50. Which is true of the kinetic energy and the potential energy of the substance from time 7 to 10 minute?
1) The kinetic energy increases and the potential energy remains constant.
2) The kinetic energy decreases and the potential energy remains constant.
3) The kinetic energy remains constant and the potential energy decreases.
4) Both the kinetic energy and the potential energy decrease.

Lesson 3 - Heat (Thermal) Energy and Heat Calculations

Introduction

Heat is a form of energy that can flow (or transfer) from one object to another. Heat (thermal) energy will always flow from the area or object of a higher temperature to the area or object of a lower temperature. During chemical and physical changes heat energy is either absorbed or released. The amount of heat energy absorbed or released can be determined using various methods. One of those methods (and the most convenience) is to take the temperature of the surrounding before and after a physical or chemical change. If other factors are known about the substance, the temperature difference can be used in a heat equation to calculate the amount of heat absorbed or released by the substance.
In this lesson, you will learn about heat and its relationship to temperature. You will also learn how to use heat equations to calculate how much heat is absorbed or released during temperature and phase changes.

20. Heat

Heat is a form of energy that can flow from high to low temperature area.
Joules and calories are the two most common units for measuring heat.
A calorimeter is a device that is used to measure the amount of heat energy involve during a physical and chemical change.
Exothermic describes a process that releases (emits or loses) heat. As an object or a substance releases heat, its temperature decreases.
Endothermic describes a process that absorbs (takes in or gains) heat. As an object or a substance absorbs heat, its temperature increases.

Direction of heat flow

Lower temp Higher temp
Heat will always flow from high temperature to low temperature.

21. Heat Flow and Temperature: Practice Problems

Concept Task: Be able to determine and describe the direction of heat flow .

Practice 51

Object A and object B are placed next to each other. If object B is at $12^{\circ} \mathrm{C}$, heat will flow from object A to object B when the temperature of object A is at

1) $6^{\circ} \mathrm{C}$
2) $10^{\circ} \mathrm{C}$
3) $12^{\circ} \mathrm{C}$
4) $15^{\circ} \mathrm{C}$

Practice 52

A solid material X is place in liquid Y . Heat will flow from Y to X when the temperature of

1) Y is $20^{\circ} \mathrm{C}$ and X is $30^{\circ} \mathrm{C}$
2) Y is $10^{\circ} \mathrm{C}$ and X is $20^{\circ} \mathrm{C}$
3) Y is $15^{\circ} \mathrm{C}$ and $X 10^{\circ} \mathrm{C}$
4) Y is $30^{\circ} \mathrm{C}$ and X is $40^{\circ} \mathrm{C}$

Practice 53

Given the diagrams

Which correctly describes the energy transfer when the metal object is dropped into the water?

1) Thermal energy will flow from the metal to water, and the water temperature will decrease
2) Thermal energy will flow from the metal to water, and the water temperature will increase
3) Chemical energy will flow from the metal to water, and the water temperature will decrease
4) Chemical energy will flow from the metal to water, and the water temperature will increase

22. Heat Constants and Equations

Amount of heat energy absorbed or released by a substance can be calculated using a heat equation. There are three heat equations, and each heat equation contains a heat constants one of the factors. The heat equations and heat constants for water are given on the Reference Tables.

Reference Table B

Heat constants for water

Specific Heat Capacity (\mathbf{C}) of $\mathrm{H}_{2} \mathrm{O}(\ell)$	$4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{K}$
Heat of fusion $\left(\mathbf{H}_{\mathrm{f}}\right)$	$334 \mathrm{~J} / \mathrm{g}$
Heat of Vaporization $\left(\mathbf{H}_{\mathbf{v}}\right)$	$2260 \mathrm{~J} / \mathrm{g}$

Reference Table T

Heat Equations

$$
\begin{aligned}
& q=m \bullet C \bullet \Delta T \\
& q=m \bullet H_{f} \\
& q=m \bullet H_{v}
\end{aligned}
$$

The notes below explain more about heat constants and equations.

23. Specific Heat Capacity

A substance can change from one temperature to another by either absorbing or releasing heat. If heat is absorbed or gained, the temperature of the substance will increase. If heat is released or lost, the temperature of the substance will decrease.

If the specific heat capacity and mass of a substance are known, the amount of heat absorbed or released by the substance to change from one temperature to another can be calculated using the equation below:

$$
\mathrm{m}=\text { mass of the substance }(g)
$$

$$
\text { Heat }=m \times C \times \Delta T
$$

$\mathrm{C}=$ specific heat capacity ($\mathrm{J} / \mathrm{g} \bullet \mathrm{K}$)
$\Delta T=$ difference in temperature (K)
($\Delta \mathrm{T}=$ High temp - Low temp)
The specific heat capacity (C) of a substance is the amount of heat needed to change the temperature Of a one-gram sample of a substance by just one Kelvin.

The specific heat capacity (C) for water $=4.18 \mathrm{~J} / \mathrm{g} \bullet \mathrm{K}$

(See Reference Table B)

Interpretations:

It takes 4.18 joules (J) of heat energy to change the temperature of a one-gram (g) sample of water by just one Kelvin (1 K)
or
A one gram sample of water will absorb or release 4.18 Joules of heat energy to change temperature by just one Kelvin.

In heat equations, the specific heat capacity (C) is the conversion factor that allows you to calculate the amount of heat absorbed or released by any given mass (grams) of a substance to change between any two temperatures.

Note: Specific heat capacities of other substances are different from that of water.

24. Heat of Fusion

A substance can change between the solid and liquid phases by absorbing or releasing heat.
If heat is absorbed by a solid, the substance will change to its liquid state. This is called melting. If heat is released by a liquid, the substance will change to its solid state. This is called freezing.

If the heat of fusion and mass of a substance are known, the amount of heat absorbed or released by the substance to change between the solid and liquid states can be calculated using the heat equation below:

$$
\text { Heat }=\mathbf{m} \times \mathbf{H}_{\mathbf{f}} \quad \begin{aligned}
& \mathrm{m}=\text { mass of solid or liquid }(g) \\
& H_{\mathrm{f}}=\text { Heat of fusion }(\mathrm{J} / \mathrm{g})
\end{aligned}
$$

The heat of fusion $\left(\mathbf{H}_{f}\right)$ of a substance is the amount of heat needed to melt a one-gram sample of a solid at a constant temperature.

The heat of fusion for water $=334 \mathrm{~J} / \mathrm{g} \quad$ (See Reference Table B)

Interpretation:

It takes 334 joules of heat to melt or freeze a one gram sample of water at its melting point.
In the equation above, the heat of fusion $\left(\mathrm{H}_{\mathrm{f}}\right)$ is the conversion factor that allows you to calculate the amount of heat absorbed or released by any given mass of a substance to melt or freeze.

Note: The heat of fusion of other substances are different from that of water.

25. Heat of Vaporization

A substance can change between the liquid and gas phase by absorbing or releasing heat.
If heat is absorbed by a liquid, the substance will change to its gaseous state. This is called vaporization. If heat is released by a gas, the substance will change to its liquid state. This is called condensation.

If the heat of vaporization and mass of a substance are known, the amount of heat absorbed or released by the substance to change between the liquid and gas states can be calculated using the heat equation below:

$$
\text { Heat }=m \times H_{v}
$$

$\mathrm{m}=$ mass of the liquid or gas (g)
$H_{v}=$ Heat of vaporization (J/g)

The heat of vaporization $\left(\mathbf{H}_{\mathbf{v}}\right)$ of a substance is the amount of heat needed to vaporize a one-gram sample of a liquid at a constant temperature.

The heat of vaporization for water $=2260 \mathrm{~J} / \mathrm{g} \quad$ (See Reference Table B)

Interpretation:

It takes 2260 joules of heat to vaporize or condense a one gram sample of water at its boiling point.
In the equation above, the heat of vaporization $\left(\mathrm{H}_{\mathrm{v}}\right)$ is the conversion factor that allows you to calculate the amount of heat absorbed or released by any given mass of a substance to vaporize or condense.
Note: The heat of vaporization of other substances are different from that of water.

26. Heat Calculations: Examples and Practice Problems

Concept Task: Be able to use a heat equation to setup and calculate heat absorbed or released by a substance.

Heat equation for temperature change

$$
\text { Heat }=m \times C \times \Delta T
$$

Choose this equation if two different temperatures (or a change in temp) are given in a heat problem.

Example

How much heat is released by a 3.0-gram sample of water to change its temperature from $15^{\circ} \mathrm{C}$ to $10 . .^{\circ} \mathrm{C}$?
Show a numerical setup and the calculated result.
Step 1. Identify all known and unknown factors.

```
Known:
Mass \(=3.0 \mathrm{~g}\) Unknown
\(\Delta \mathrm{T}=15^{\circ} \mathrm{C}-10 .{ }^{\circ} \mathrm{C}=5.0^{\circ} \mathrm{C}\)
\(\mathrm{C}=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad\) (for water - see Table B)
```

Step 2: Write an equation, setup and solve
Heat $=m \quad x \quad C \quad x \quad \Delta T$
Heat $=3.0 \times 4.18 \times 5.0$ numerical setup
Heat $=63$ Joules calculated result

Practice 54

How much heat is released by a 15 -gram sample of water when it is cooled from $40 .{ }^{\circ} \mathrm{C}$ to $30 .{ }^{\circ} \mathrm{C}$?

1) 630 J
2) 42 J
3) 63 J
4) 130 J

Practice 55

What is the total amount of heat energy needed to change the temperature of a 65 -gram sample of water from $25^{\circ} \mathrm{C}$ to $40 .{ }^{\circ} \mathrm{C}$?

1) $6.3 \times 10^{-2} \mathrm{~kJ}$
2) $4.1 \times 10^{0} \mathrm{~kJ}$
3) $1.1 \times 10^{-1} \mathrm{~kJ}$
4) $6.8 \times 10^{1} \mathrm{~kJ}$

Practice 56

What is the temperature change of a 5 -gram sample of water that had absorbed 200 Joules of heat?
Show a numerical setup and the calculated result.

Practice 57

The heat of fusion for an unknown substance is $220 \mathrm{~J} / \mathrm{g}$. How much heat is required to melt a $35-\mathrm{g}$ sample of this substance at its melting point?

1) 255 J
2) 73480 J
3) 11690 J
4) 7700 J

Practice 58

1200 Joules is added to a sample of ice to change it to water at $0^{\circ} \mathrm{C}$. What is the mass of the ice?

1) 3.6 g
2) 0.27 g
3) 334 g
4) 1.9 g

Practice 59

What is the heat of fusion of an unknown solid if 4.8 kJ of heat is required to completely melt a 10.-gram sample of this solid?

Step 2: Write an equation, setup and solve

Heat	$=m$	x	H_{f}	
Heat	$=6$	x	334	numerical setup
Heat	$=2004$ J	calculated result		

Heat equation for vaporization phase change

Heat $=m \times H_{v}$

Choose this equation if a heat question has words or phrase such as to boil, to vaporize, liquid to gas, or if the temperature is constant at $100^{\circ} \mathrm{C}$.

Example

Liquid ammonia has a heat of vaporization of $1.35 \mathrm{~kJ} / \mathrm{g}$.
How many kilojoules of heat are needed to evaporate a
5.00-gram sample of ammonia at its boiling point?

Show a numerical setup and the calculated result.
Step 1: Identify all known and unknown factors.
Mass $=5.00 \mathrm{~g} \quad$ Heat $=$?
$\mathrm{H}_{\mathrm{v}} \quad=1.35 \mathrm{~kJ} / \mathrm{g}$ (NOT water, do not use Table B value)
Step 2: Write equation, setup and solve
Heat $=m \times H_{v}$
Heat $=5.00 \times 1.35 \quad$ numerical setup
Heat $=6.75$ kJ calculated result

Heat $=5.00 \times 1.35$ numerical setup
Heat $=6.75 \mathrm{~kJ}$ calculated result

Practice 60

How much heat must be removed from a $2.5-\mathrm{g}$ sample of steam to condense it to water at a constant temperature of $100^{\circ} \mathrm{C}$?

1) 828.5 J
2) 5650 J
3) 250 J
4) 1050 J

Practice 61

How much heat must be added to 11 grams of water to change it to steam at a constant temperature?

1) 2.3 kJ
2) 0.21 kJ
3) 25 kJ
4) 2486 kJ

Practice 62

A 23 g sample of an unknown liquid substance absorbed 34 kJ of heat to change to gas at its boiling point. What is the heat of vaporization of the unknown liquid?
Show a numerical setup and the calculated result

27. Heat Problems from Data Table

Practice 63

The following information was collected by a student from a calorimetric experiment.

Mass of calorimeter + water	48.0 g
Mass of calorimeter	37.0 g
Initial temperature of water	$60.0^{\circ} \mathrm{C}$
Final temperature of water	$?$

If the student determined that the water in the calorimeter had absorbed 400 Joules of heat, what was the final temperature of the water?
Show a numerical setup and the calculated result.

Practice 64

A student collected the following data from a calorimeter laboratory experiment

Mass of calorimeter + solid	72.5 g
Mass of calorimeter	40.5 g
Heat absorbed by solid to melt	12736 J
Melting point of the solid	371 K

Based on the data collected by the student, what is the heat of fusion of the solid?

Show a numerical setup and the calculated result.

Lesson 4 - Characteristics of Gases

Introduction

Gas behavior is influenced by three key factors: volume (space), pressure and temperature. The relationships between these three factors are the basis for gas laws and gas theories. These laws and theories attempt to explain how gases behave.
In this lesson you will learn about the kinetic molecular theory, gas laws, and gas law calculations.

28. Kinetic Molecular Theory (KMT) of an Ideal Gas

The Kinetic Molecular Theory explains behavior of an ideal gas.
An ideal gas is a theoretical (an assumed) gas that has properties described below.
Concept Facts: Study to memorize the characteristics below.
Summary of the Kinetic Molecular Theory of an ideal gas.

- A gases is composed of individual particles
- Distances between gas particles are large (far apart)
- Gas particles are in continuous, random, straight-line motion
- When two particles of a gas collide, energy is transferred from one particle to another
- Particles of a gas have no attraction to each other
- Individual gas particles have no volume (negligible or insignificant volume)

A real gas is a gas that we know to exist.
Examples of real gases: oxygen, carbon dioxide, hydrogen, helium, etc.
Since the kinetic molecular theory (summarized above) applies mainly to an ideal gas, the model cannot be used to predict the exact behavior of a real gas. Therefore, real gases deviate from (do not behave exactly like) an ideal gas.

Reasons that a real gas behaves differently (deviate) from an ideal gas:

- Real gas particles do attract each other
- Real gas particles do have volume
(Ideal gas particles are assumed to have no attraction)
(Ideal gas particles are assumed to have no volume)

Gases that behave more like an ideal gas:

Real gases with small molecular masses behave more like an ideal gas.
Hydrogen (H) and Helium (He), the two smallest real gases by mass, will behave more like an ideal gas.
Temperature and Pressure conditions that real gases behave more like an ideal gas:

Real gases behave more like an ideal gas under high temperature and low pressure

Real gases behave least like an ideal gas under low temperature and high pressure

The hydrogen gas particles in container \mathbf{A} will behave more like an ideal gas than those in container B .

29. Kinetic Molecular Theory and Deviation: Practice Problems

Practice 65

An ideal gas is made up of gas particles that

1) have volume
2) can be liquefied
3) attract each other
4) are in random motion

Practice 66

Real gases differ from an ideal gas because the molecules of real gases have

1) some volume and no attraction for each other
2) some volume and some attraction for each other
3) no volume and no attraction for each other
4) no volume and some attraction for each other

Practice 67

Under which two conditions do real gases behave least like an ideal gas?

1) High pressure and low temperature
2) Low pressure and high temperature
3) High pressure and high temperature
4) Low pressure and low temperature

Practice 68

The kinetic molecular theory assumes that the particles of an ideal gas

1) are in random, constant, straight line-motion
2) are arranged in regular geometric pattern
3) have strong attractive forces between them
4) have collision that result in the system losing energy

Practice 69

At STP, which will behave most like an ideal gas?

1) Fluorine
2) Oxygen
3) Nitrogen
4) Chlorine

Practice 70

According to the Periodic Table, which of the following gases will behave least like an ideal gas?

1) Ar
2) Ne
3) Xe
4) Kr

Practice 71

Under which conditions of temperature and pressure would oxygen behaves most like an ideal gas?

1) $25^{\circ} \mathrm{C}$ and 100 kPa
2) $35^{\circ} \mathrm{C}$ and 100 kPa
3) $25^{\circ} \mathrm{C}$ and 80 kPa
4) $35^{\circ} \mathrm{C}$ and 80 kPa

Practice 72

A real gas will behave least like an ideal gas under which conditions of temperature and pressure?

1) $50^{\circ} \mathrm{C}$ and 0.5 atm
2) $50^{\circ} \mathrm{C}$ and 0.8 atm
3) 300 K and 0.5 atm
4) 300 K and 0.8 atm

30. Pressure, Volume, Temperature

Behavior of gases is influenced by volume, pressure, and temperature of the gas.

Volume

Volume of a confined gas is a measure of the space in which the gas occupies. Units: milliliters (mL) or liters (L) $1 \mathrm{~L}=1000 \mathrm{~mL}$

Pressure

Pressure of a gas is a measure of how much force the gas particles exert on the walls of its container. This pressure is equal but opposite in magnitude to the external pressure exerted on the gas.
Units: atmosphere (atm) or Kilopascal (kPa) 1 atm $=101.3 \mathrm{kPa}$

Temperature

Temperature of a gas is a measure of the average kinetic energy of the gas particles. As temperature increases the gas particles move faster, and their average kinetic energy increases.

$$
\text { Units: degree Celsius }\left({ }^{\circ} \mathrm{C}\right) \text { or Kelvin }(\mathrm{K}) \quad K={ }^{\circ} \mathrm{C}+273
$$

STP
Standard Temperature: 273 K or $0^{\circ} \mathrm{C}$
Standard Pressure: $\quad 1 \mathrm{~atm}$ or b101.3 kPa
Reference Table A

The relationships between these three factors of a gas are discussed in the next few pages.

Practice 73

Express 0.267 liters of O_{2} in milliliters.

Practice 74

What is the equivalent of 3487.2 mL of He in liters?

Practice 75

What pressure, in kPa , is equivalent to 1.7 atm?

Practice 76

What is the pressure of 65 kPa in atm?

31. Avogadro's Law

Avogadro's Law states: Under the same conditions of temperature and pressure, gases of equal volume contain equal number of molecules (particles).

In the example below, container A contains helium gas and container B contains oxygen gas.
NOTE that both containers have the same volume, and are at the same temperature and pressure.

Helium gas

Container B

Oxygen gas

If helium gas molecules are counted in Container A and oxygen gas molecules are counted in Container B, the number of molecules of He in A will be the same as the number of molecules of O_{2} in B.

Practice 77

At STP, a 1.0 L sample of $\mathrm{H}_{2}(g)$ would have the same number of gas molecules as

1) 0.5 L of He
2) 1.0 L of CO
3) 2.0 L of Ne
4) $3.0 \mathrm{Lof} \mathrm{N}_{2}$

Practice 78

Under which conditions would a 0.2 L sample of O_{2} has the same number of molecules as a 0.2 L sample of N_{2} that is at STP?

1) $0 K$ and 1 atm
2) 0 K and 2 atm
3) 273 K and 1 atm
4) 273 K and 2 atm

Practice 79

The table below gives the temperature and pressure of four different gas samples, each in a 1.5 L container:

Gas sample	Temperature (K)	Pressure (atm)
SO_{2}	200	1.5
Ar	300	3.0
$\mathrm{~N}_{2}$	200	1.5
O_{2}	300	1.5

Which two gas samples contain the same number of molecules?

1) Ar and O_{2}
2) Ar and N_{2}
3) SO_{2} and Ar
4) SO_{2} and N_{2}

Practice 80

A sample of oxygen gas is sealed in container X. A sample of hydrogen gas is sealed in container Z.
Both samples have the same volume, temperature, and pressure. Which statement is true?

1) Container X contains more gas molecules than container Z.
2) Container X contains fewer gas molecules than container Z.
3) Containers X and Z both contain the same number of gas molecules.
4) Containers X and Z both contain the same mass of gas.

32. Boyle's Law: Volume - Pressure Relationship at Constant Temperature

Boyle's law describes the relationship between volume and pressure of a gas constant temperature.
Concept Fact: Study and remember the following relationships.
At constant temperature, the volume of a set mass of a confined gas is inversely proportional to the pressure of the gas.

This fact can be expressed a few different ways:

- As the pressure on a gas decreases, volume increases proportionally. If pressure on a gas is halved, volume of the gas will double.
- As the pressure on a gas increases, volume decreases by the same factor. If pressure on a gas is doubled, volume of the gas will be half.
(see diagrams to the right)
Boyle's law equation (below) can be used to calculate a new volume of a gas when the pressure on the gas is changed at constant temperature.

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}} \quad \mathbf{P}_{2}=\text { New pressure (atm of } \mathrm{kPa} \text {) } \\
& V_{1}=\text { Initial volume (} \mathrm{mL} \text { or } \mathrm{L} \text {) } \\
& V_{2}=\text { New volume (mL or } L \text {) }
\end{aligned}
$$

According to Boyle's law:
At constant temperature, the product of the new pressure $\left(\mathrm{P}_{2}\right)$ and volume $\left(\mathrm{V}_{2}\right)$ will be equal to the product of the initial pressure $\left(\mathrm{P}_{1}\right)$ and volume $\left(\mathrm{V}_{1}\right)$.

Diagrams and graph showing pressure-volume relationship of a gas at constant temperature.

33. Boyle's Law: Example and Practice Problems

Concept Task: Be able to solve gas law problems at a constant temperature.

Example

At constant temperature, what is the new volume of a 3.0 L sample of oxygen gas if its pressure is changed from 0.50 atm to 0.25 atm?
Show a numerical setup and the calculated result.
Step 1: Identify all known and unknown factors

$$
\begin{array}{ll}
\mathrm{V}_{1}=3.0 \mathrm{~L} & \mathrm{~V}_{2}=\text { ? (unknown) } \\
\mathrm{P}_{1}=0.50 \mathrm{~atm} & \mathrm{P}_{2}=0.25 \mathrm{~atm}
\end{array}
$$

Step 2: Write the equation, setup, and solve

Practice 81

The volume of $\mathrm{CO}_{2}(\mathrm{~g})$ changes from 50 mL to 100 mL when pressure on the gas is changed to 0.6 atm . If the temperature of the gas is constant, what was the initial pressure on the gas?

1) 1.2 atm
2) 0.3 atm
3) 60 atm
4) 2 atm

Practice 82

A 0.8-L sample of gas at STP had its pressure changed to 25.3 kPa . What is the new volume of the gas if the temperature is held constant? Show a numerical setup and the calculated result.

34. Charles' Law: Volume - Temperature Relationship at Constant Pressure

Charles' law describes the relationship between volume and Kelvin temperature of a gas at constant pressure.
Concept Facts: Study and remember the following relationships.
At constant pressure, the volume of a set mass of a confined gas is directly proportional to the Kelvin temperature.
This fact can be expressed a few different ways:

- As temperature of a gas increases, volume increases proportionally. If temperature of a gas is doubled, volume will also double
- As temperature of a gas decreases, volume decreases by the same factor. If temperature of a gas is halved, volume will also be halved (see diagrams to the right)
Charles' law equation (below) can be used to calculate a new volume of a gas when the temperature of the gas is changed at constant pressure.

V_{1}	
---	V_{2}
$\mathrm{~T}_{1}$	$--\mathrm{T}_{2}$

$V_{1}=$ Initial volume (mLor L)
$V_{2}=$ New volume (mLor L)
$\mathrm{T}_{1}=$ Initial Kelvin temperature (K)
$\mathrm{T}_{2}=$ New Kelvin temperature (K)
According to Charles' law:
At constant pressure, the ratio of the new volume $\left(\mathrm{V}_{2}\right)$ to Kelvin temperature (T_{2}) will always be equal to the ratio of the initial volume $\left(V_{1}\right)$ to Kelvin temperature $\left(T_{1}\right)$

| initial P |
| :--- | :--- | :--- |
| initial V |

35. Charles' Law: Example and Practice Problems

Concept Task: Be able to solve gas law problems at constant pressure.

Example

The volume of a confined gas is 25 mL at 280 K . At what temperature would the gas volume be 75 mL if the pressure is held constant?
Show a numerical setup and the calculated result.
Step 1: Identify all known and unknown factors

$$
\begin{array}{ll}
\mathrm{V}_{1}=25 \mathrm{~mL} & \mathrm{~V}_{2}=75 \mathrm{~mL} \\
\mathrm{~T}_{1}=280 \mathrm{~K} & \mathrm{~T}_{2}=\text { ? (unknown) }
\end{array}
$$

Step 2: Write the equation, setup, and solve

36. Gay-Lussac's Law: Pressure - Temperature Relationship at Constant Volume

Gay-Lussac's law describes the relationship between the pressure and Kelvin temperature of a gas at constant volume.
Concept Facts: Study and remember the following facts:
At constant volume, the pressure of a set mass of a confined gas is directly proportional to the Kelvin temperature .
This fact can be expressed a few different ways:

- As temperature of a gas decreases, pressure decreases If temperature of a gas is halved, pressure will also be halved
- As temperature of a gas decreases, pressure increases If temperature of a gas is doubled, pressure of the gas will also double.
(See diagrams to the right)
Gay-Lussac's law equation below can be used to calculate the new pressure of a gas when temperature of the gas is changed at constant volume.

$\mathrm{P}_{1}=$ Initial pressure (atm or kPa$)$
$\mathrm{P}_{2}=$ New pressure (atm or kPa$)$
$\mathrm{T}_{1}=$ Initial Kelvin temperature (K)
$\mathrm{T}_{2}=$ New Kelvin temperature (K)

According to Gay-Lussac's law:
At constant volume, the ratio of the new pressure $\left(\mathrm{P}_{2}\right)$ to temperature $\left(\mathrm{T}_{2}\right)$
will always be equal to the ratio of the initial pressure $\left(P_{1}\right)$ to temperature $\left(T_{1}\right)$.

37. Gay-Lussac's Law: Example and Practice Problems

Concept Task: Be able to solve gas law problems at constant volume.

Example

Pressure on a gas changes from 20 kPa to 50 kPa when the temperature of the gas is changed to $30^{\circ} \mathrm{C}$. If volume was held constant, calculate the initial temperature of the gas? Show a setup and the calculated result.

Step 1: Identify all known and unknown factors

$$
\begin{array}{ll}
\mathrm{P}_{1}=20 \mathrm{kPa} & \mathrm{P}_{2}=50 \mathrm{kPa} \\
\mathrm{~T}_{1}=? & \mathrm{~T}_{2}=30^{\circ} \mathrm{C} \text { (must be in Kelvin) } \\
& \mathrm{T}_{2}=30+273=303 \mathrm{~K}
\end{array}
$$

Step 2: Write the equation, setup, and solve

P_{1}		P_{2}	
T_{1}		T_{2}	
20 ---1		$\begin{gathered} 50 \\ --303 \end{gathered}$	$\}_{\text {numerical }}^{\text {netup }}$
T ${ }_{1}$	=	121 K	calculated result

Practice 85

A gas sample at 546 K has a pressure of 0.4 atm . If the volume of the gas sample is unchanged, what will be the new pressure of the gas if its temperature is changed to 136.5 K ?

1) 0.4 atm
2) 0.1 atm
3) 0.8 atm
4) 0.2 atm

Practice 86

A sample of CO_{2} is at STP. If the volume of the CO_{2} gas remains constant and its temperature is changed to $45^{\circ} \mathrm{C}$, what will be the new pressure (in kilopascal) of the gas? Show a setup and the calculated result.

38. Combined Gas Law

The Combined Gas law describes the relationship between all three factors; volume, pressure, and temperature. In the combined gas law, the only constant is the mass of the gas.
The combined gas law equation below is a combination of Boyle's, Charles' , and Gay-Lussac's law equations:
$\frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{1}}=\frac{\mathbf{P}_{2} \mathbf{V}_{2}}{\mathbf{T}_{2}}$

NOTE: In all gas law problems, mass and the number of particles of the gas are always constant.

See Reference Table T
Eliminating the constant from the combined gas law equation will give you the equation needed to solve any of the above gas law problems.
39. Combined Gas Law: Example and Practice Problems

Concept Task: Be able to solve combined gas law problems

Example

Hydrogen gas has a volume of 100 mL at STP. If temperature and pressure are changed to 0.5 atm and 546 K respectively, what will be the new volume of the gas?
Show a numerical setup and the calculated result.
Step 1: Identify all known and unknown factors

$$
\operatorname{STP} \begin{cases}\mathrm{V}_{1}=100 \mathrm{~mL} & \mathrm{~V}_{2}=? \text { (unknown) } \\ \mathrm{P}_{1}=1 \mathrm{~atm} & \mathrm{P}_{2}=0.5 \mathrm{~atm} \\ \mathrm{~T}_{1}=273 \mathrm{~K} & \mathrm{~T}_{2}=546 \mathrm{~K}\end{cases}
$$

Step 2: Write out the equation, setup, and solve

$\mathrm{P}_{1} \mathrm{~V}_{1}$		$\mathrm{P}_{2} \mathrm{~V}_{2}$	
T_{1}		T2	numerical setup
(1) (100)		(0.5) (V_{2})	
273		546	
(1) (100)(546)			
(273) (0.5)		V_{2})
400 mL	=	\mathbf{V}_{2}	result

Practice 89

The volume of a 1.0 mole sample of an ideal gas will increase when

1) pressure decreases and the temperature decreases
2) pressure decreases and the temperature increases
3) pressure increases and the temperature decreases
4) pressure increases and the temperature increases

Practice 90

A gas is at STP, if the temperature of the gas is held constant while the volume of the gas is cut in half, the pressure of the gas will be

1) double
2) halve
3) triple
4) quadruple

Practice 87

A gas sample has a volume of 1.4 L at a temperature of 20.K and a pressure of 1.0 atm . What will be the new volume when the temperature is changed to $40 . \mathrm{K}$ and the pressure is changed to 0.50 atm ?

1) 0.35 L
2) 0.75 L
3) 1.4 L
4) 5.6 L

Practice 88

A gas occupies a volume of 3 L at 1.5 atm and $80^{\circ} \mathrm{C}$. Calculate the new volume of the gas if the temperature is changed to $150^{\circ} \mathrm{C}$ and the pressure is dropped to 1.0 atm .
Show numerical setup and the calculated result.

Practice 91

The graph below shows a change in the volume of a gas sample as its temperature rises at constant pressure.

What temperature is represented by point B ?

1) 546 K
2) 298 K
3) 273 K
4) 2 K

Lesson 5 - Physical and Chemical Properties and Changes

Introduction

Properties are sets of characteristics that can be used to identify and classify matter. Two types of properties of matter are physical and chemical properties.
In this lesson, you will learn the differences between physical and chemical properties as well as the differences between physical and chemical changes of matter.

40. Physical and Chemical Properties

Physical Properties and Changes

A physical property is a characteristic of a substance that can be observed or measured without changing chemical composition of the substance. Some properties of a substance depend on sample size or amount, others do not.
Examples:
Extensive properties depend on sample size or amount present. Mass, weight and volume are examples of extensive properties.
Intensive properties do not depend on sample size or amount. Melting, freezing and boiling points, density, solubility, color, odor, conductivity, luster, and hardness are intensive properties.
Differences in physical properties of substances make it possible to separate one substance from another in a mixture.

A physical change is a change of a substance from one form to another without changing its chemical composition.

Chemical Properties and Changes

A chemical property is a characteristic of a substance that is observed or measured through interaction with other substances.

Examples:
It burns, it combusts, it decomposes, it reacts with, it combines with, or it rusts are some of the phrases that can be used to describe chemical properties of a substance.

A chemical change is a change in composition and properties of one substance to those of other substances. Chemical reactions are ways by which chemical changes of substances occur.
Types of chemical reactions include synthesis, decomposition, single replacement, and double replacement.

LOOKing Ahead \rightleftarrows Topic 5 - Formulas and Equations:

Practice 92

Which best describes a chemical property of sodium?

1) It is a shiny metal
2) It is smooth
3) It reacts vigorously with water
4) It is a hard solid

Practice 93

A large sample of a solid calcium sulfate is crushed into smaller pieces. Which two physical properties are the same for both the large sample and one of the smaller pieces?

1) Mass and density
2) Mass and volume
3) Solubility and density
4) Solubility and volume

Practice 94

An example of a physical property of an element is the element's ability to

1) Form a compound
2) React with oxygen
3) React with an acid
4) Form an aqueous solution

Practice 95

During a chemical change, a substance changes its

1) Density
2) Solubility
3) Composition
4) Phase

Practice 96

Given the particle diagram representing four molecules of a substance.

Which particle diagram best represents this same substance after a physical change has
1)

3)

2)

4)

Concept Terms

Below is a list of vocabulary terms from Topic 1. You should know the definition and facts related to each term.

1. Pure substance	16. Freezing	31. Joules
2. Mixture	17. Condensation	32. Specific heat capacity
3. Element	18. Evaporation	33. Heat of fusion
4. Compound	19. Sublimation	34. Heat of vaporization
5. Law of definite composition	20. Deposition	35. Calorimeter
6. Homogeneous mixture	21. Exothermic	36. Kinetic molecular theory
7. Heterogeneous mixture	22. Endothermic	37. Ideal gas
8. Aqueous solution	23. Temperature	38. Avogadro's law
9. Decantation	24. Kinetic energy	39. Boyle's law
10. Filtration	25. Potential energy	40. Charles law
11. Distillation	26. Ice /liquid equilibrium	41. Gay - Lussac's law
12. Solid	27. Water / steam equilibrium	42. Combined gas law
13. Liquid	28. Absolute Zero	43. Physical property
14. Gas	29. Phase change diagram	44. Chemical property
15. Fusion	30. Heat	45. Physical change
		46. Chemical change

Concept Tasks

Below is a list of concept tasks from Topic 1. You should know how to solve problems and answer questions related to each concept task.

1. Recognizing chemical symbols for elements, compounds, and mixtures
2. Recognizing diagram representations for elements, compounds, and mixtures
3. Recognizing symbol representations for substances in different phases
4. Recognizing phase change equations
5. Determining substances with the highest and lowest kinetic energy based on temperature
6. Temperature conversion between Kelvin and Celsius units
7. Interpreting phase change diagrams (heating and cooling curves)
8. Determining direction of heat flow based on temperatures of two objects
9. Heat calculation during temperature and phase changes
10. Determining gases that behave most or least like an ideal gas
11. Determining temperature and pressure that a gas behaves most or least like an ideal gas
12. Determining gases that contain equal number of molecules
13. Pressure conversion between atm and kPa units
14. Gas law calculations at constant temperature
15. Gas law calculations at constant pressure
16. Gas law calculation at constant volume
17. Combined gas law calculation
18. Determining physical and chemical properties of a substance
19. Determining physical and chemical changes of a substance

Topic Outline

In this topic you will learn about these concepts:

- Arrangements of the Elements
- Periodic Trends
- Types of Elements and their Properties
- Allotropes
- Groups of Elements and their Properties

Lesson 1 - Arrangement of the Elements

Introduction:

There are more than 100 known elements. Most of the elements are naturally occurring, while a few are artificially produced. The modern periodic table contains all known elements. These elements are arranged on the periodic table in order of increasing atomic number. Many important atomic structure information about each element can be found on the periodic table.
In this lesson you will learn about the arrangement of the elements on the periodic table.

1. Properties of the Modern Periodic Table

Concept Facts: Study to remember the following information about the periodic table.

- Elements are arranged in order of increasing atomic number
- Chemical properties of the elements are periodic functions of their atomic numbers
- Elements on the periodic table are categorized as metals, nonmetals, or metalloids
- More than two thirds of the elements are metals
- The periodic table contains elements that are in all three phases (solid, liquid, and gas)
- The majority of the elements exist as solids at room temperature
- Only two (mercury, Hg , and bromine, Br ,) are liquids at room temperature
- Element symbol can be one (O), two (Na), or three (Uub) letters. The first letter is always a capital letter. The second and third letters are always lowercases.

The following information can be found in the box for each element on the Periodic Table.

15.999	Atomic mass	196.967
-2	Selected oxidation states (charges)	+1 +2
O	Element's symbol	Au
8	Atomic number	79
2-6	Electron configuration	2-8-18-32-18-1

Information listed in the box of each element reveals a lot about the atomic structure of the element.
LOGKing Ahead $\quad \longrightarrow$
Topic 3 - Atomic Structure. You will learn to relate information on the periodic table to atomic structure.

2. Groups and Periods

Elements on the periodic table are placed in groups and periods. Every element has a group number and a period number. For an example: Phosphorus (P) is in Group 15, Period 3.

Groups (families) are the vertical arrangements of the elements.

- Elements in the same group have the same number of valence electrons and similar chemical properties
- There are eighteen (18) groups on the Periodic Table of the Elements

Group names are listed below.

Group 1:	Alkali metals
Group 2:	Alkaline earth metals
Group 3-12:	Transition metals
Group 17:	Halogens
Group 18:	Noble gases

Periods (rows) are the horizontal arrangements of the elements.

- Elements in the same period have the same number of occupied electron shells (energy levels)
- There are seven (7) periods on the Periodic Table of the Elements

The Periodic Law states: Properties of the elements are periodic functions of their atomic numbers. In other words, arranging the elements in order of increasing atomic number allows elements with similar chemical properties to be in the same group.

3. Arrangements of the Elements: Practice Problems

Practice 1

Which of the following information cannot be found in the box of an element on the periodic table?

1) Oxidation state
2) Atomic number
3) Phase
4) Atomic mass

Practice 2

The Periodic Table of the Elements contains elements that are

1) solids only
2) liquids and gases only
3) solid and liquids only
4) solid, liquids and gases

Practice 3

The observed regularities in the properties of the elements are periodic functions of their

1) Atomic numbers
2) Atomic mass
3) Oxidation state
4) Reactivity

Practice 4

The similarities in chemical properties of elements within the same group is due to similarity in

1) Number of electron shells
2) Oxidation state
3) Valence electrons
4) Chemical properties

Practice 5

Majority of the elements on the Periodic Table are

1) Metals
2) Metalloids
3) Nonmetals
4) Noble gases

Practice 6

Which of these elements has similar chemical properties as iodine?

1) Xe
2) Te
3) Br
4) Se

Practice 7
Which list contains elements with greatest variation in chemical properties?

1) O, S and Se
2) N, P and As
3) $\mathrm{Be}, \mathrm{N}, \mathrm{O}$
4) Ba , Sr and Ca

Practice 8

Which two elements have the same number of occupied electron shells?

1) Mg and Be
2) Mg and Al
3) Mg and O
4) Mg and Ca

Practice 9

Element Oxygen and Sulfur can both form a bond with sodium with similar chemical formula. The similarity in their formula is due to

1) Oxygen and Sulfur having the same number of kernel electrons
2) Oxygen and sulfur having the same number of valence electrons
3) Oxygen and sulfur having the same number of protons
4) Oxygen and sulfur having the same molecular structure

Lesson 2 - Types of Elements and their Properties

Introduction

There are three main types of elements: metal, nonmetals, and metalloids.
Elements of one type have set of physical and chemical properties that are used to distinguish them from elements of the other types.
In this lesson you will learn about the three types of elements, their locations on the periodic table and properties.

4. Types of Elements

5. Physical Properties of Elements

There are several physical properties that can be used to describe and identify the elements.
The following is a list of these physical properties and their definitions.
Concept Facts: Study to remember these properties.
Malleable describes a solid that is easily hammered and flattened into a thin sheet. (Ex. Aluminum, Al)
Ductile describes a solid that is easily drawn into a thin wire. (Ex. Copper, Cu)
Brittle describes a solid that is easily broken or shattered into pieces when struck. (Ex. Sulfur, S)
Luster describes the shininess of a substance. (Ex. Gold, Au)
Conductivity describes the ability of heat or electricity to flow through a substance. (Ex. Copper, Cu)
Electronegativity describes an atom's ability to attract electrons from another atom during bonding. Ionization energy describes an atom's ability to lose its most loosely bound valence electrons.
Density describes the mass to volume ratio of an element.
Atomic radius describes the size of the atom of an element.
Ionic radius describes the size of the element after it has lost or gained electrons to become an ion. Use Reference Table S to find and compare electronegativity, ionization energy, atomic radius, and density values of the elements.

6. Metals

Metallic elements are located to the left of the periodic table.
All elements in Groups 1 to 12 (except hydrogen) are classified as metals. The rest of the metallic elements are located near the top of Groups 13 through 17. The majority (about 75\%) of the elements are metals.

Below are some general properties (characteristics) of metals.

Concept Facts: Study to remember these properties.

- Almost all metals are solids at room temperature. The exception is mercury (Hg), which is a liquid metal.
- Solid metals are malleable and ductile. Many have high luster.
- Metals tend to have high heat (thermal) and electrical conductivity due to their mobile valence electrons
- Metals tend to have low electronegativity values (because they do not attract electrons easily)
- Metals tend to have low ionization energy values (which is why metals lose their electrons easily)
- Metals lose electrons and form positive ions
- Radius (size) of a metal atom decreases as it loses electrons and form a positive ion
- The size of a positive (+) ion is always smaller than the size of the neutral atom

7. Metalloids

Metalloids are the seven elements located between the metals and nonmetals.
Metalloid elements are located on the periodic table along the thick zigzag line.
Below are some generally properties (characteristics) of metalloids.
Concept Facts: Study to remember these properties.

- Metalloids tend to have properties of both metals and nonmetals
- Metalloids properties are more like those of metals and less like those of nonmetals

Tellurium (Te)

- Metalloids exist only as solids at room temperature.

8. Nonmetals

Nonmetallic elements are located to the right of the periodic table.
All elements in Groups 17 and 18 (except At) are classified as nonmetals. The rest of the nonmetals are located near the bottom of Groups 14, 15 and 16. Hydrogen (in Group 1) is also a nonmetal. Below are some general properties (characteristics) of nonmetals.

Concept Facts: Study to remember these properties.

- Nonmetals are found in all three phases: solid, liquid and gas.
- Most nonmetals exist as molecular gases and solids. Bromine is the only liquid nonmetal.

Sulfur (S)

- Solid nonmetals are generally brittle and dull (lack luster, not shiny)
- Nonmetals have low or poor electrical and heat (thermal) conductivity
- Nonmetals tend to have high electronegativity values (because they attract and gain electrons easily)
- Nonmetals tend to have high ionization energy (which is why nonmetals do not lose electrons easily)
- Nonmetals gain electrons and form negative ions
- Radius of a nonmetal atom increases as it gains electrons and forms a negative ion
- The size of a negative (-) ion is always bigger than that of the neutral atom

9. Types of Elements: Summary of Properties

	Phases at STP	Physical properties	Conductivity	Electrone- gativity	lonization energy	Electrons In bonding	Common ion	lonic size (radius)
Metals	Solid Liquid	Malleable Luster Ductile	High	Low	Low	Lose electrons	+ (positive)	Smaller than the atom
Nonmetals	Solid Liquid Gas	Brittle Dull	Low	High	High	Gain electrons	- (negative)	Bigger than the atom
Metalloids	Solid only	Properties of metals and nonmetals	Low	varies	varies	Lose electrons	+ (positive)	Smaller than the atom

10. Types of Elements: Practice Problems

Practice 10

Elements that can be hammered into thin sheets are

1) Ductile
2) Luster
3) Malleable
4) Brittle

Practice 11

The tendency for an atom to give away its electrons during bonding is measured by its

1) Atomic radius value
2) Electronegativity value
3) Density value
4) Ionization energy value

Practice 12

Nonmetal elements on the Periodic Table can be found in which phase or phases at STP?

1) Solid only
2) Solid or liquid only
3) Liquid only
4) Solid, liquid and gas

Practice 13

Which two characteristics are associated with nonmetals?

1) Low first ionization energy and low electronegativity
2) Low first ionization energy and high electronegativity
3) High first ionization energy and low electronegativity
4) High first ionization energy and high electronegativity

Practice 14

Metalloids tend to have properties resembling

1) Nonmetals only
2) Metals only
3) Both metals and nonmetals
4) Neither a metal nor a nonmetal

Practice 15

Which is a property of most metals?

1) They tend to gain electrons easily when bonding.
2) They tend to lose electrons easily when bonding.
3) They are poor conductors of heat.
4) They are poor conductors of electricity.

Practice 16

Which of these elements is a metalloid?

1) Gallium
2) Phosphorus
3) Germanium
4) Tin

Practice 17

Which list consists of a metal, nonmetal, and metalloid respectively?

1) $\mathrm{Al}, \mathrm{B}, \mathrm{Si}$
2) $\mathrm{Ni}, \mathrm{Si}, \mathrm{P}$
3) $\mathrm{Cr}, \mathrm{C}, \mathrm{Cl}$
4) C, Si, Ge

Practice 18

Which element is brittle and non-conducting solid?

1) S
2) Ne
3) Ni
4) Hg

Practice 19

Which of these elements has high thermal and electrical conductivity?

1) Iodine
2) Carbon
3) Phosphorus
4) Iron

Practice 20
Which properties best describes the element mercury?

1) It has luster
2) It is brittle
3) It has a high electronegativity value
4) It a poor electrical conductor

Practice 21

Which is true of element carbon?

1) It is malleable
2) It has Luster
3) It has low electrical conductivity
4) It is a gas at STP

Lesson 3 - Group Properties

Introduction

There are 18 groups (vertical arrangements) on the Periodic Table. Elements within each group share similar chemical characteristics because they have the same number of valence electrons.
In this lesson you will learn properties that are shared by elements in each group.

11. The Periodic Table of the Elements

	Atomic mass	$\mathbf{3 0 . 9 7 3}$
Element's symbol	-3 +3 +5	Selected oxidation states
Atomic number	15	
Electron configuration	$2-8-5$	

Period 1

Period 2

Period 3

Period 4

Period 5

Period 6

Period 7

Lanthanide Series

Actinide Series

Copyright © 2015 E3 Scholastic Publishing. All Rights Reserved.

12. Group 1: Alkali Metals

Alkali metals are the elements in Group 1 of the periodic table. Members include lithium, sodium, potassium, rubidium, cesium and francium. Hydrogen is not an alkali metal even though it is often placed in Group 1.

Properties (characteristics) of alkali metals are listed below.
Concept Facts: Study to remember these properties.

- One valence (outer shell) electron
- Form a positive one (+1) ion by losing one valence electron during bonding
- Very low electronegativity and very low ionization energy values.
- Found in nature in compounds, not as free elements, due to high reactivity
- Obtain from electrolytic reduction of fused salts ($\mathbf{N a C l}, \mathbf{K B r}$, etc.)
- If \mathbf{X} represents a Group 1 atom
$\mathbf{X Y}$ is the general formula of a Group 1 atom bonding with a Group 17 halogen (\mathbf{Y}) $\mathbf{X}_{2} \mathbf{O}$ is the general formula of a Group 1 atom bonding with \mathbf{O} to form an oxide.
- Francium (Fr) is the most reactive metal in Group 1, and of all metals
- Francium is also radioactive.
- All alkali metals exist as solids at room temperature.

Group 1 Alkali	Group 2
${ }_{3}^{\mathrm{Li}}$	
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	
19^{K}	
37^{Rb}	
$\begin{gathered} \text { Cs } \\ 55 \end{gathered}$	
87	

13. Group 2: Alkaline Earth Metals

Alkaline earth metals are the elements in Group 2 of the periodic table.
Members include beryllium, magnesium, calcium, strontium, barium, and radium.

Properties (characteristics) of alkaline earth metals are listed below.

Concept Facts: Study to remember these properties.

- Two valence (outer shell) electrons
- Form positive two (+2) ion by losing all two valence electrons during bonding
- Found in nature as compounds (not as free elements) due to high reactivity
- Are obtained from fused salt compounds $\left(\mathrm{MgCl}_{2}, \mathrm{CaBr}_{2}\right.$, etc.)
- If \mathbf{M} represents a Group 2 atom
$\mathbf{M Y} \mathbf{Y}_{2}$ is the general formula of a Group $\mathbf{2}$ atom bonding with a Group 17 halogen (\mathbf{Y})
MO is the general formula of a Group $\mathbf{2}$ atom bonding with \mathbf{O} to form an oxide
- Radium (Ra) is the most reactive metal in this group. Radium is also radioactive.
- All alkaline earth metals exist as solids at room temperature.

Group 1	Group 2 Alkaline Earth
	Be 4
	Mg 12
	Ca 20
	Sr 38
	Ba 56
	Ra 88

14. Groups 3-12: Transition Metals

Transition metals are the elements in Groups 3 through 12 of the Periodic Table.
Properties of these elements vary widely. However, some unique properties can be observed among them.
Properties (characteristics) of transition metals are listed below.
Concept Facts: Study to remember these properties.

- They tend to form multiple positive oxidation numbers
- They can lose electrons in two or more different sublevels of their atoms
- Their ions usually form colorful compounds
CuCl_{2} is a bluish color compound
FeCl_{2} - is an orange color compound

15. Group 17: Halogens

Halogens are the elements in Group 17 of the periodic table.
Members include fluorine, chlorine, bromine, and iodine
Properties (characteristics) of halogens are listed below.

Concept Facts: Study to remember these properties.

- They exist as diatomic (two-atom) elements; $\left(\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right)$
- Each has seven valence electrons
- Very high electronegativity and high ionization energy values
- Form negative one (-1) ion by gaining one electron to fill their valence shells
- F and Cl are obtained from their fused salt ($\mathrm{NaF}, \mathrm{NaCl}$, etc.) because of high reactivity
- If \mathbf{Y} is a Group 17 halogen

XY is the general formula of a Group 17 halogen bonding with a Group $1(\mathbf{X})$ atom $M Y_{2}$ is the general formula of a Group 17 atom bonding with a Group $2(\mathbf{M})$ atom

- The only group containing elements in all three phases at STP

Group 18	
Group 17 Halogens	
${ }_{9}^{F}$	
$\begin{gathered} \mathrm{Cl} \\ 17 \end{gathered}$	
35^{Br}	
$\begin{array}{r} 1 \\ 53 \\ \hline \end{array}$	
$\begin{aligned} & \text { At } \\ & 85 \end{aligned}$	

Gases (fluorine and chlorine) Liquid (bromine) Solid (iodine)

- Fluorine is the most reactive of the group, and the most reactive nonmetal overall
- Astatine (At) in this group is a metalloid

16. Group 18: Noble Gases

Noble gases are the elements in Group 18 of the periodic table.
Group 18
Members include helium, neon, argon, krypton, xenon, and radon Properties (characteristics) of noble gases are listed below.

Concept Facts: Study to remember these properties.

- They exist as monatomic (one-atom) elements (Ne, He, Kr...)
- All are gases are at STP.
- They all have full valence shells with eight electrons. Helium is full with its two electrons.
- They neither gain nor lose electrons because their valence shells are full
- They are very stable and are non-reactive (do not form too many compounds)
- Argon (Ar) and Xenon (Xe) have been found to produce a few stable compounds with fluorine.

Example; XeF_{4} (xenon tetrafluoride)

17. Group Properties: Summary Table

Group number	Group name	Types of elements in the group	Phases (at STP)	Valence electrons (during bonding)	Common oxidation number (charge)	Chemical bonding (general formula)
1	Alkali metals	Metal	Solid (all)	1 (lose)	+1	$\begin{array}{ll} \mathrm{XY} & \text { with halogens (17) } \\ \mathbf{X}_{2} \mathrm{O} & \text { with oxygen (16) } \end{array}$
2	Alkaline earth	Metal	Solid (all)	2 (lose)	+2	MY_{2} with halogens (17) MO with oxygen (16))
3-12	Transition metals	Metal	Liquid (Hg) Solid (the rest)	(lose)	Multiple + charges	varies (form colorful compounds)
13	-	Metalloid Metal	Solid (all	3 (lose)	+3	LY_{3} with halogens (17) $\mathrm{L}_{2} \mathrm{O}_{3}$ with oxygen (16)
14	-	Nonmetal Metalloid Metal	Solid (all)	4 (some share) (some lose)	vary	varies
15	-	Nonmetal Metalloid Metal	$\begin{aligned} & \text { Gas (N) } \\ & \text { Solid (the rest) } \end{aligned}$	5 (gain or share)	-3	varies
16	Oxygen group	Nonmetal Metalloid	Gas (O) Solid (the rest)	6 (gain or share)	-2	$\mathrm{X}_{2} \mathrm{O}$ with alkali metals (1) MO with alkaline earth (2)
17	Halogens (Diatomic)	Nonmetal	Gas (F and Cl) Liquid (Br) Solid (I)	7 (gain or share)	-1	XY with alkali metals (1) MY with alkaline earths (2)
18	Noble gases (Monatomic)	Nonmetal	Gas (all)	8 (neither gain nor share)	0	Forms very few compounds. XeF_{4} is the most common.

18. Group Properties: Practice Problems

Concept Task: Be able to identify an element based on group name

Practice 22

Which element is a noble gas?

1) Neon
2) Fluorine
3) Oxygen
4) Nitrogen

Practice 23

Which of these element is an alkaline earth element?

1) Na
2) H
3) K
4) Ra

Practice 24

Iron is best classified as a(n)

1) transition nonmetal
2) alkali metal
3) transition metal
4) alkaline earth metal

practice 25

The element in Group 17 Period 4 is a(n)

1) transition metal
2) alkali metal
3) halogen
4) noble gas

Concept Task: Be able to identify and classify an element based on group properties.

Practice 26

Which set contains elements that are never found in nature in their atomic state?

1) K and Na
2) K and S
3) Na and Ne
4) Na and C

Practice 27
Element X is a solid that is brittle, lack luster, and has six valence electrons. In which group on the Periodic Table would element X be found?

1) 1
2) 2
3) 15
4) 16

Practice 28

Element Z is in Period 3 of the Periodic Table. Which element is Z if it forms an oxide with a formula of $\mathrm{Z}_{2} \mathrm{O}_{3}$?

1) Na
2) Al
3) Mg
4) Cl

Practice 29
Which of these oxides will likely form a colored solution when dissolved in water?

1) $\mathrm{Na}_{2} \mathrm{O}$
2) SO_{2}
3) CaO
4) FeO

Lesson 3. Periodic Trends

Introduction

Periodic trends refer to patterns of properties that exist in a group or period as elements are considered from one end of the table to the other.

Trend in atomic number is an example of a periodic trend found on the periodic table.
As the elements are considered one after the other from:
Left to Right across a Period: Atomic number of successive element increases

Bottom to Top up a Group: Atomic number of successive element decreases

Many other trends exist on the periodic table even though they are not so obvious.
In this lesson you will learn of the following trends.
Trends in atomic radius (size).
Trends in metallic and nonmetallic properties.
Trends in electronegativity and ionization energy.

19. Trends in Atomic Size (Atomic Radius)

Atomic radius is defined as half the distance between two nuclei of the same atom when they are joined together. Atomic radius value gives a good approximation of the size of an atom.
The atomic radii of the elements can be found on Reference Table S.
Trends in atomic radius that are found on the Periodic Table are as follow:
Concept Facts: Study to remember the following trends.
Top to Bottom down a Group: Atomic radius (size) increases due to the increase in the number of electron shells. Left to Right across a Period: Atomic radius decreases due to the increase in nuclear charges.

20. Trends in Atomic Size: Practice Problems

Concept Task: Be able to determine element with the largest or smallest radius (size). Use Table S

Practice 30

Which of the following elements has the largest atomic radius?

1) K
2) Ca
3) Al
4) Na

Practice 31

Which list of elements is arranged in order of increasing atomic radii?

1) $\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}$
2) $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{Be}$
3) $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}$
4) $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

Practice 32

The atom of which element is bigger than the atom of the element calcium?

1) Sr
2) Sc
3) Mg
4) Be

Practice 33
Which atom has a bigger atomic radius than the atom of Sulfur?

1) Oxygen, because it has more electron shells
2) Oxygen, because it has a smaller nuclear charge
3) Phosphorus, because it more electron shells
4) Phosphorus, because it has a smaller nuclear charge

21. Trends in Metallic and Nonmetallic Properties

Trends in properties and reactivity vary between metals and nonmetals. The bottom left corner contains the most reactive metals. Francium is the most reactive of all metals. The top right corner contains the most reactive nonmetals. Fluorine is the most reactive of all nonmetals.
Trends in metallic and nonmetallic properties and reactivity are summarized below.
Concept Facts: Study to remember the following trends.
Top to Bottom down a Group: Metallic properties and reactivity increase.
Nonmetallic properties and reactivity decrease
Left to Right across a Period: Metallic properties and reactivity decrease.
Nonmetallic properties and reactivity increase

22. Trends in Metallic and Nonmetallic Properties: Practice Problems

Concept Task: Be able to determine which element has the most (or least) metallic or nonmetallic properties
Element farthest Left and Lowest down: Strongest metallic / Least nonmetallic
Element farthest right and Highest up: Least metallic / Strongest nonmetallic

Practice 34

Which of the following element has the most pronounced metallic characteristics?

1) C
2) Co
3) Al
4) Rb

Practice 35

Which of these elements has greatest nonmetallic properties?

1) Se
2) Te
3) Br
4) I

Practice 36

Which of these halogens is the least reactive on the Period Table?

1) 1
2) Br
3) Cl
4) F

Practice 37

Which of these elements has stronger metallic characteristics than aluminum?

1) He
2) Mg
3) Ga
4) Si

Practice 38

Which of these element has stronger nonmetallic properties than chlorine?

1) Sulfur
2) Fluorine
3) Argon
4) Oxygen

Practice 39

Which part of the Periodic Table contains elements with the strongest nonmetallic properties?

1) Upper right
2) Upper left
3) Lower right
4) Lower left

23. Trends in Electronegativity and Ionization Energy

Electronegativity defines an atom's ability to attract (or gain) electrons from another atom during chemical bonding. The electronegativity value assigned to each element is relative to one another. The higher the electronegativity value, the more likely it is for the atom to attract (or gain) electrons and form a negative ion during bonding.
Fluorine (F) is assigned the highest electronegativity value of 4.0.
Francium (Fr) is assigned the lowest electronegativity value of 0.7 .
This means that of all the elements, fluorine has the greatest tendency to attract (or gain) electrons. Francium has the least ability or tendency to attract electrons during bonding.

Ionization energy refers to the amount of energy needed to remove an electron from an atom. The first ionization energy is the energy to remove the most loosely bound electron from an atom. Ionization energy measures the tendency of (how likely) an atom to lose electrons and form a positive ion. The lower the first ionization energy of an atom, the easier (or the more likely) it is for that atom to lose its most loosely bound valence electron and form a positive ion.
Metals lose electrons because of their low ionization energies. The alkali metals in Group 1 generally have the lowest ionization energy, which allows them to lose their one valence electron most readily.

Nonmetals have low tendency to lose electrons because of their high ionization energies. The noble gases in group 18 tend to have the highest ionization energy values. Since these elements already have a full valence shell of electrons, a high amount of energy is required to remove any electron from their atoms.

Concept Facts: Study to remember the following trends.

Top to Bottom down a Group: Electronegativity (tendency to gain or attract electrons) decreases.
Ionization energy (tendency to lose electrons) decreases
Left to Right across a Period: Electronegativity increases
Ionization energy increases

NOTE: Electronegativity and ionization energy values for the elements are found on the Reference Table

24. Trends in Electronegativity and Ionization Energy: Practice Problems

Concept Task: Be able to determine which element that has the greatest or least tendency to attract electrons.

Greatest attraction for electrons (most likely to gain):
Element with the HIGHEST electronegativity value
Least attraction for electrons (least likely to gain)
Element with the LOWEST electronegativity value
Concept Task: Be able to determine which element has the greatest or least tendency to lose electrons.

Greatest tendency to lose electrons

Element with the LOWEST ionization energy value
Least tendency to lose electrons
Element with the HIGHEST ionization energy value
Use Reference Table S to locate ionization energy values

Practice 40

As the elements of Group 1 on the Periodic Table are considered in order of increasing atomic radius, the ionization energy of each successive element generally

1) decreases
2) increases
3) remains the same

Practice 41

Which of these elements is most likely to attract electrons from another atom during chemical bonding?

1) Fe
2) C
3) Al
4) Fr

Practice 42
Which elements has a greater tendency to attract electron than phosphorus?

1) Silicon
2) Boron
3) Arsenic
4) Sulfur

Practice 43

Which of the following elements has the greatest tendency to lose its valence electrons?

1) Be
2) S
3) Ne
4) Ca

Practice 44

Aluminum will lose its most loosely bound electron less readily than

1) Calcium
2) Indium
3) Nitrogen
4) Scandium

Practice 45

Which sequence of elements is arranged in order of decrease tendency to attract electrons during chemical bonding?

1) $\mathrm{Al}, \mathrm{Si}, \mathrm{P}$
2) $\mathrm{I}, \mathrm{Br}, \mathrm{Cl}$
3) Cs, Na, Li
4) $\mathrm{C}, \mathrm{B}, \mathrm{Be}$

25. Allotropes

Allotropes refer to two or more different molecular forms of the same element in the same state.
Differences in molecular structures give allotropes of the same element different physical properties (color, shape, density, melting point, etc.) and different chemical properties (reactivity).

Examples of some common allotropes:
Oxygen allotropes: Oxygen gas $\left(\mathrm{O}_{2}\right)$ and Ozone $\left(\mathrm{O}_{3}\right)$ are different molecular forms of oxygen.
They have different chemical and different physical properties.
Carbon allotropes: Diamond, graphite, and fullerene are different molecular forms of carbon. They have different chemical and different physical properties.

Phosphorus allotropes: White, Red, and Black are all different forms of element phosphorus.
They have different chemical and different physical properties.

Concept Terms

Key vocabulary terms and concepts from Topic 2 are listed below. You should know definition and facts related to each term and concept.

1. Periodic Law
2. Group
3. Period
4. Metal
5. Nonmetal
6. Metalloid
7. Alkali metal
8. Alkaline Earth metal
9. Transition element
10. Halogen
11. Noble gas
12. Malleable
13. Luster
14. Ductile
15. Brittle
16. Density
17. Ionization energy
18. Electronegativity
19. Atomic radius
20. Conductivity
21. Properties of metals
22. Properties of nonmetals
23. Properties of metalloids
24. Properties of Group 1 alkali metals
25. Properties of Group 2 alkaline earth metals
26. Properties of Groups 3-12 transition metals
27. Properties of Group 17 halogens
28. Properties of Group 18 noble gases
29. Trends in metallic and nonmetallic properties
30. Trends in atomic size or radius
31. Trends in ionization energy
32. Trends in electronegativity

Concept Task:

Concept tasks from Topic 2 are listed below. You should know how to solve problems and answer questions related to each concept task.

1. Determining elements with the same characteristics.
2. Identifying an element as a metal, metalloid, or nonmetal
3. Determining element's name or symbol based on given properties
4. Determining property or properties of a given elements name or symbol
5. Identifying an element based on a given group name
6. Relating element's name or symbol to group properties
7. Determining the element with the largest or smallest atomic radius
8. Determining the element that has the most or least metallic properties
9. Determining the element that has the most or least nonmetallic properties
10. Determining the element with the greatest or least tendency to attract electrons
11. Determining the element with the greatest or least tendency to lose electrons

Topics 3 through 13 are not available in the preview.
Visit SurvivingChem.com
Buy a Hard Copy
Make a class order purchase.
Buy eBook from GooglePlay

Teachers

Get instant free eDesk Copy to preview and see if this book is right for your class. Click on the link below.

Guided Study Book - Teacher Preview

Send us an email to request a pass-code to preview the entire book.

Day 1: Matter and Energy - Multiple Choices

1. Which of these terms refers to matter that could be heterogeneous?
1) Element
2) Mixture
3) Compound
4) Solution
2. One similarity between all mixtures and compounds is that both
1) are heterogeneous
2) combine in definite ratios
3) are homogeneous
4) consist of two or more substances
3. Which correctly describes particles of a substance in the gas phase?
1) Particles are arranged in a regular geometric pattern and are far apart
2) Particles are in a fixed rigid position and are close together
3) Particles move freely in a straight path
4) Particles move freely and are close together.
4. When a substance evaporates, it is changing from
1) liquid to gas
2) gas to liquid
3) solid to gas
4) gas to solid
5. Energy that is stored in chemical substances is called
1) potential energy
2) activation energy
3) kinetic energy
4) ionization energy
6. The specific heat capacity of water is $4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$. Adding 4.18 Joules of heat to a 1-gram sample of water will cause the water to
1) change from solid to liquid
2) change its temperature 1 degree Celsius
3) change from liquid to solid
4) change its temperature 4.18 degree Celsius
7. Real gases differ from ideal gases because the molecules of real gases have
1) some volume and no attraction for each other
2) some attraction and some attraction for each other
3) no volume and no attraction for each other
4) no volume and some attraction for each other
8. Under which two conditions do real gases behave most like an ideal gas?
1) High pressure and low temperature
2) High pressure and high temperature
3) Low pressure and high temperature
4) Low pressure and low temperature
9. At constant pressure, the volume of a confined gas varies
1) Directly with the Kelvin temperature
2) Directly with the mass of the gas
3) Indirectly with the Kelvin temperature
4) Indirectly with the mass of the gas
10. Under which conditions would a volume of a given sample of a gas decrease?
1) Decrease pressure and increase temperature
2) Increase pressure and decrease temperature
3) Decrease pressure and decrease temperature
4) Increase pressure and increase temperature
11. Which statement describes a chemical property of iron?
1) Iron can be flattened into sheets.
2) Iron conducts electricity and heat.
3) Iron combines with oxygen to form rust.
4) Iron can be drawn into a wire.
12. Which sample at STP has the same number of molecules as 5 liters of $\mathrm{NO}_{2}(g)$ at STP?
1) 5 grams of $\mathrm{H}_{2}(g)$
2) 5 liters of $\mathrm{CH}_{4}(g)$
3) 5 moles of $\mathrm{O}_{2}(\mathrm{~g})$
4) 5×10^{23} molecules of $\mathrm{CO}_{2}(g)$

Day 1: Matter and Energy - Multiple Choices

13. Which substance can be decomposed by a chemical change?
1) Ammonia
2) Aluminum
3) Potassium
4) Helium
14. The graph below represents the relationship between temperature and time as heat is added at a constant rate to a substance. starting when the substance is a solid below its melting point

During which time period (in minutes) does the substance's average kinetic energy remain the same?

1) $0-1$
2) $1-3$
3) $3-5$
4) $9-10$
15. Molecules of which substance have the lowest average kinetic energy?
1) NO at $20^{\circ} \mathrm{C}$
2) NO_{2} at $-30^{\circ} \mathrm{C}$
3) NO_{2} at 35 K
4) $\mathrm{N}_{2} \mathrm{O}_{3}$ at 110 K
16. At STP, the difference between the boiling point and the freezing point of water in the Kelvin scale is
1) 373
2) 273
3) 180
4) 100
17. How much heat is needed to change a 5.0 gram sample of water from $65^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$?
1) 210 J
2) 14 J
3) 21 J
4) 43 J
18. A real gas will behave most like an ideal gas under which conditions of temperature and pressure?
1) $0^{\circ} \mathrm{C}$ and 1 atm
2) $0^{\circ} \mathrm{C}$ and 2 atm
3) $273^{\circ} \mathrm{C}$ and 1 atm
4) $273^{\circ} \mathrm{C}$ and 2 atm
19. A 2.0 L sample of $\mathrm{O}_{2}(g)$ at STP had its volume changed to 1.5 L . If the temperature of the gas was held constant, what is the new pressure of the gas in kilopascals?
1) 3.0 kPa
2) 152 kPa
3) 101.3 kPa
4) 135 kPa
20. A gas occupies a volume of 6 L at 3 atm and $70^{\circ} \mathrm{C}$. Which setup is correct for calculating the new volume of the gas if the temperature is changed to $150^{\circ} \mathrm{C}$ and the pressure is dropped to 1.0 atm?
1) $6 \times \frac{3}{3} \times-\cdots \quad 150$
2) $6 \times \quad \begin{aligned} & 3 \times 423 \\ & --\cdots-\cdots\end{aligned}$
3) $6 \times$| 3 |
| :--- |
| |
| -1×80 |

21. Given the balanced particle-diagram equation:

$$
\infty+888 \longrightarrow \infty
$$

Key
$=$ an atom of an element
$=$ an atom of a different element

Which statement describes the type of change and the chemical properties of the product and reactants?

1) The equation represents a physical change, with the product and reactants having different chemical properties.
2) The equation represents a physical change, with the product and reactants having identical chemical properties.
3) The equation represents a chemical change, with the product and reactants having different chemical properties.
4) The equation represents a chemical change, with the product and reactants having identical chemical properties.

Day 1: Matter and Energy - Constructed Response

Base your answers to questions 22 to 25 on the diagram of a molecule of nitrogen shown below.

represents one molecule of nitrogen.
22. Draw a particle model that shows at least six molecules of nitrogen gas.
23. Draw a particle model that shows at least six molecules Write your answers here
22. of liquid nitrogen.
24. Describe, in terms of particle arrangement, the difference 23. between nitrogen gas and liquid nitrogen.
25. Good models should reflect the true nature of the concept 25. being represented. What is the limitation of two-dimensional models?

Base your answer to questions 26 through 28 on the information and diagrams below.
Cylinder A contains 22.0 grams of $\mathrm{CO}_{2}(g)$ and Cylinder B contains $\mathrm{N}_{2}(g)$. The volumes, pressures, and temperatures of the two gases are indicated under each cylinder.

26. How does the number of molecules of $\mathrm{CO}_{2}(g)$ in cylinder A Show work and answers here 26. compare to the number of molecules of $\mathrm{N}_{2}(g)$ in container B? Your answer must include both $\mathrm{CO}_{2}(g)$ and $\mathrm{N}_{2}(g)$.
27. The temperature of $\mathrm{CO}_{2}(g)$ is increased to $450 . \mathrm{K}$ and 27. the volume of cylinder A remains constant. Show a correct numerical setup for calculating the new pressure of $\mathrm{CO}_{2}(g)$ in cylinder A .
28. Calculate the new pressure of $\mathrm{CO}_{2}(g)$ in cylinder A based 28. on your setup.

Day 1: Matter and Energy - Constructed Response

Base your answers to questions 29 through 33 on the information below.
A substance is a solid at $15^{\circ} \mathrm{C}$. A student heated a sample of the substance and recorded the temperature at one-minute intervals in the data table below.

Time (min)	0	1	2	3	4	5	6	7	8	9	10	11	12
Temperature $\left(^{\circ} \mathrm{C}\right)$	15	32	46	53	53	53	53	53	53	53	53	60	65

Heating Curve
29. On the grid, mark an appropriate scale on the axis labeled " Temperature (${ }^{\circ} \mathrm{C}$)." An appropriate scale is one that allows a trend to be seen.
30. Plot the data from the data table. Circle and connect the points

Write your answers on this side.
31. Based on the data table, what is the melting point of the substance?
32. What is the evidence that the average kinetic energy of the particles of the substance is increasing during the first three minutes?
33. The heat of fusion for this substance is 122 joules per gram. How many joules of heat are needed to melt 7.50 grams of this substance at its melting point?
31.
32.

Day 2: The Periodic Table - Multiple Choices

1. Which determines the order of placement of the elements on the modern Periodic Table?
1) Atomic mass
2) The number of neutrons, only
3) Atomic number
4) The number of neutrons and protons
2. The elements located in the lower left corner of the Periodic Table are classified as
1) metals
2) nonmetals
3) metalloids
4) noble gases
3. The strength of an atom's attraction for the electrons in a chemical bond is measured by
1) density
2) ionization energy
3) heat of reaction
4) electronegativity
4. Which term represents the attraction one atom has for the electrons in a bond with another atom?
1) electronegativity
2) first ionization energy
3) electrical conductivity
4) mechanical energy
5. A metal, M, forms an oxide compound with the general formula $\mathrm{M}_{2} \mathrm{O}$. In which group on the Periodic Table could metal M be found?
1) Group 1
2) Group 2
3) Group 16
4) Group 17
6. Which halogen is correctly paired with its phase at STP?
1) $B r$ is a liquid
2) F is a solid
3) I is a gas
4) Cl is a liquid
7. As the elements in Group 1 of the Periodic Table are considered in order of increasing atomic number, the atomic radius of each successive element increases. This is primarily due to an increase in the number of
1) neutrons in the nucleus
2) valence electrons
3) unpaired electrons
4) electron shells
8. When elements within Period 3 are considered in order of decreasing atomic number, ionization energy of each successive element generally
1) increases due to an increase in atomic size
2) decreases due to an increase in atomic size
3) increases due to a decrease in atomic size
4) decreases due to a decrease in atomic size
9. Which set of characteristics is true of elements in Group 2 of the Periodic Table?
1) They all have two energy levels and have different chemical characteristics
2) They all have two energy levels and share similar chemical characteristics
3) They all have two valence electrons and share similar chemical properties
4) They all have two valence electrons and have different chemical properties
10. At STP, solid carbon can exist as graphite or as diamond. These two forms of carbon have
1) the same properties and the same crystal structures
2) the same properties and different crystal structures
3) different properties and the same crystal structures
4) different properties and different crystal structures
11. Which grouping of circles, when considered in order from the top to the bottom, best represents the relative size of the atoms of $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$, and Rb , respectively?

1)

2)

3)

4)

Day 2: The Periodic Table - Multiple Choices

12. Elements strontium and beryllium both form a bond with fluorine with similar chemical formulas. The similarity in their formulas is due to
1) strontium and beryllium having the same number of kernel electrons
2) strontium and beryllium having the same number of valence electrons
3) strontium and beryllium having the same number of protons
4) strontium and beryllium having the same molecular structure
13. The element Antimony is a
1) metal
2) nonmetal
3) metalloid
4) halogen
14. Which of these elements in Period 2 is likely to form a negative ion?
1) Oxygen
2) Boron
3) Ne
4) Li
15. Which of these characteristics best describes the element sulfur at STP?
1) It is brittle
2) It is malleable
3) It has luster
4) It is ductile
16. Which of these elements has the highest thermal and electrical conductivity
1) iodine
2) carbon
3) phosphorus
4) iron
17. Chlorine will bond with which metallic element to form a colorful compound?
1) Aluminum
2) Sodium
3) Strontium
4)Manganese
18. According to the Periodic Table, which sequence correctly places the elements in order of increasing atomic size?
1) $\mathrm{Na} \rightarrow \mathrm{Li} \rightarrow \mathrm{H} \rightarrow \mathrm{K}$
2) $\mathrm{Ba} \rightarrow \mathrm{Sr} \rightarrow \mathrm{Ca} \rightarrow \mathrm{Mg}$
3) $\mathrm{Te} \rightarrow \mathrm{Sb} \rightarrow \mathrm{Sn} \rightarrow \mathrm{In}$
4) $\mathrm{H} \rightarrow \mathrm{He} \rightarrow \mathrm{Li} \rightarrow \mathrm{Be}$
19. Which of these elements has stronger metallic characteristics than aluminum?
1) He
2) Mg
3) Ga
4) Si
20. Which element has a greater tendency to attract electrons than phosphorus?
1) Silicon
2) Arsenic
3) Boron
4) Sulfur
21. Which element has the greatest density at STP?
1) barium
2) magnesium
3) beryllium
4) radium
22. An element that is malleable and a good conductor of heat and electricity could have an atomic number of
1) 16
2) 18
3) 29
4) 35
23. Sodium atoms, potassium atoms, and cesium atoms have the same
1) atomic radius
2) first ionization energy
3) total number of protons
4) oxidation state
24. When the elements in Group 1 are considered in order from top to bottom, each successive element at standard pressure has
1) a higher melting point and a higher boiling point
2) a higher melting point and a lower boiling point
3) a lower melting point and a higher boiling point
4) a lower melting point and a lower boiling point
25. Elements Q, X, and Z are in the same group on the Periodic Table and are listed in order of increasing atomic number. The melting point of element Q is $-219^{\circ} \mathrm{C}$ and the melting point of element Z is $-7^{\circ} \mathrm{C}$. Which temperature is closest to the melting point of element X ?
1) $-7^{\circ} \mathrm{C}$
2) $-101^{\circ} \mathrm{C}$
3) $-219^{\circ} \mathrm{C}$
4) $-226^{\circ} \mathrm{C}$

Day 2: The Periodic Table - Constructed Response

Base your answer to questions $\mathbf{2 6}$ through $\mathbf{2 9}$ on the information below.

A metal, M , was obtained from compound in a rock sample. Experiments have determined that the element is a member of Group 2 on the Periodic Table of the Elements.
26. What is the phase of element M at STP?
27. Explain, in terms of electrons, why element M is a good conductor of electricity.
28. Explain why the radius of a positive ion of element 28. M is smaller than the radius of an atom of element M.
29. Using the element symbol M for the element, write 29. the chemical formula for the compound that forms when element M reacts with lodine?
26.
27.

The table below shows the electronegativity of selected elements of the Periodic Table.

Electronegativity

Element	Atomic Number	Electronegativity
Beryllium	4	1.6
Boron	5	2.0
Carbon	6	2.6
Fluorine	9	4.0
Lithium	3	1.0
Oxygen	8	3.4

30. On the grid, set up a scale for electronegativity on the y-axis and atomic number on the x-axis. Plot the data by drawing a best-fit line.
31. Using the graph, predict the electronegativity of nitrogen.
32. For these elements, state the trend in electronegativity in terms of atomic number.

Write answers here.
31. \qquad
32.

Days 13 through 16 Practice Regents Exams

 NYS Chemistry The Physical Setting

June 2014 and January 2015 Exams

THE UNIVERSITY OF THE STATE OF NEW YORK • THE STATE EDUCATION DEPARTMENT • ALBANY, NY 12234 Reference Tables for Physical Setting/CHEMISTRY 2011 Edition

Table A
Standard Temperature and Pressure

Name	Value	Unit
Standard Pressure	101.3 kPa 1 atm	kilopascal atmosphere
Standard Temperature	273 K $0^{\circ} \mathrm{C}$	kelvin degree Celsius

Table B
Physical Constants for Water

Heat of Fusion	$334 \mathrm{~J} / \mathrm{g}$
Heat of Vaporization	$2260 \mathrm{~J} / \mathrm{g}$
Specific Heat Capacity of $\mathrm{H}_{2} \mathrm{O}(\ell)$	$4.18 \mathrm{~J} / \mathrm{g} \bullet \mathrm{K}$

Table C
Selected Prefixes

Factor	Prefix	Symbol
10^{3}	kilo-	k
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	μ
10^{-9}	nano-	n
10^{-12}	pico-	p

Table D Selected Units

Symbol	Name	Quantity
m	meter	length
g	gram	mass
Pa	pascal	pressure
K	kelvin	temperature
mol	mole	amount of substance
J	joule	energy, work, quantity of heat
s	second	time
min	minute	time
h	hour	time
d	day	time
y	year	time
L	liter	volume
ppm	parts per million	concentration
M	molarity	solution concentration
u	atomic mass unit	atomic mass

Table E
Selected Polyatomic Ions

Formula	Name	Formula	Name
$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
$\mathrm{Hg}_{2}{ }^{2+}$	mercury(I)	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{MnO}_{4}{ }^{-}$	permanganate
$\left.\begin{array}{l} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \\ \mathrm{CH}_{3} \mathrm{COO}^{-} \end{array}\right\}$	acetate	$\mathrm{NO}_{2}{ }^{-}$	nitrite
		$\mathrm{NO}_{3}{ }^{-}$	nitrate
CN^{-}	cyanide	$\mathrm{O}_{2}{ }^{2-}$	peroxide
$\mathrm{CO}_{3}{ }^{2-}$	carbonate	OH^{-}	hydroxide
$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate	$\mathrm{PO}_{4}{ }^{3-}$	phosphate
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	oxalate	SCN^{-}	thiocyanate
ClO^{-}	hypochlorite	$\mathrm{SO}_{3}{ }^{2-}$	sulfite
ClO_{2}^{-}	chlorite	$\mathrm{SO}_{4}{ }^{2-}$	sulfate
$\mathrm{ClO}_{3}{ }^{-}$	chlorate	$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate
ClO_{4}^{-}	perchlorate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulfate

Table F
 Solubility Guidelines for Aqueous Solutions

Ions That Form Soluble Compounds	Exceptions	Ions That Form Insoluble Compounds*	Exceptions
Group 1 ions ($\mathrm{Li}^{+}, \mathrm{Na}^{+}$, etc.)		carbonate ($\mathrm{CO}_{3}{ }^{2-}$)	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$		chromate $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$	when combined with Group 1 ions, $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$. or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
nitrate ($\mathrm{NO}_{3}{ }^{-}$)			
$\begin{aligned} & \text { acetate }\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \mathrm{or}\right. \\ & \left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right) \end{aligned}$		phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
hydrogen carbonate $\left(\mathrm{HCO}_{3}^{-}\right)$		sulfide (S^{2-})	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$		hydroxide (OH^{-})	when combined with Group 1
halides ($\mathrm{CF}, \mathrm{Br}^{-}, \mathrm{I}^{-}$)	when combined with $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, or $\mathrm{Hg}_{2}{ }^{2+}$		ions, $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$, or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
sulfates ($\mathrm{SO}_{4}{ }^{2-}$)	when combined with Ag^{+}, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+} \text {, or } \mathrm{Pb}^{2+}$	$*_{\text {compounds having very low solubility in } \mathrm{II}_{2} \mathrm{O}}$	

Table G
Solubility Curves at Standard Pressure

Table H
Vapor Pressure of Four Liquids

Table I
Heats of Reaction at 101.3 kPa and 298 K

Reaction	$\Delta I I(\mathbf{k J})^{*}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	-890.4
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$	-2219.2
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\ell)+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\ell)$	-10943
$2 \mathrm{CH}_{3} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$	-1452
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$	-1367
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{f})$	-2804
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$	-566.0
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$	-393.5
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-3351
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})$	+182.6
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	+66.4
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-483.6
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)$	-571.6
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$	-91.8
$2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.0
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	+52.4
$2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	+227.4
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$	+53.0
$\mathrm{KNO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$	+34.89
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	-44.51
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	+14.78
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$	+25.69
$\mathrm{NaCl}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	+3.88
$\mathrm{LiBr}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$	-48.83
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$	-55.8

* The $\Delta I I$ values are based on molar quantities represented in the equations.

A minus sign indicates an exothermic reaction.

Table J
Activity Series**

Most	Metals	Nonmetals	Most
\|	Li	F_{2}	A
	Rb	Cl_{2}	
	K	Br_{2}	
	Cs	I_{2}	
	Ba		
	Sr		
	Ca		
	Na		
	Mg		
	Al		
	Ti		
	Mn		
	7 n		
	Cr		
	Fe		
	Co		
	Ni		
	Sn		
	Pb		
	H_{2}		
	Cu		
	Ag		
\checkmark	Au		\downarrow
Active			Active

**Activity Series is based on the hydrogen standard. II_{2} is not a metal.

Table K Common Acids

Formula	Name		
$\mathrm{HCl}(\mathrm{aq})$	hydrochloric acid		
$\mathrm{HNO}_{2}(\mathrm{aq})$	nitrous acid		
$\mathrm{HNO}_{3}(\mathrm{aq})$	nitric acid		
$\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$	sulfurous acid		
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	sulfuric acid		
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$	phosphoric acid		
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ or $\mathrm{CO}_{2}(\mathrm{aq})$	carbonic acid		
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$			
Or			
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}(\mathrm{Oq})$		\quad	ethanoic acid
:---			
(acetic acid)			

Table L Common Bases

Formula	Name
$\mathrm{NaOH}(\mathrm{aq})$	sodium hydroxide
$\mathrm{KOH}(\mathrm{aq})$	potassium hydroxide
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$	calcium hydroxide
$\mathrm{NH}_{3}(\mathrm{aq})$	aqueous ammonia

Table M Common Acid-Base Indicators

Indicator	Approximate pII Range for Color Change	Color Change
methyl orange	$3.1-4.4$	red to yellow
bromthymol blue	$6.0-7.6$	yellow to blue
phenolphthalein	$8-9$	colorless to pink
litmus	$4.5-8.3$	red to blue
bromcresol green	$3.8-5.4$	yellow to blue
thymol blue	$8.0-9.6$	yellow to blue

[^0]Table \mathbf{N}
Selected Radioisotopes

Nuclide	Half-Life	Decay Mode	Nuclide Name
${ }^{198} \mathrm{Au}$	2.695 d	β^{-}	gold-198
${ }^{14} \mathrm{C}$	5715 y	β^{-}	carbon-14
${ }^{37} \mathrm{Ca}$	182 ms	β^{+}	calcium-37
${ }^{60} \mathrm{Co}$	5.271 y	β^{-}	cobalt-60
${ }^{1.37} \mathrm{Cs}$	30.2 y	β^{-}	cesium-137
${ }^{5.3} \mathrm{Fe}$	8.51 min	β^{+}	iron-53
${ }^{220} \mathrm{Fr}$	27.4 s	α	francium-220
${ }^{3} \mathrm{H}$	12.31 y	β^{-}	hydrogen-3
${ }^{131} \mathrm{I}$	8.021 d	β^{-}	iodine-131
${ }^{37} \mathrm{~K}$	1.23 s	β^{+}	potassium-37
${ }^{42} \mathrm{~K}$	12.36 h	β^{-}	potassium-42
${ }^{85} \mathrm{Kr}$	10.73 y	β^{-}	krypton-85
${ }^{16} \mathrm{~N}$	7.13 s	β	nitrogen-16
${ }^{19} \mathrm{Ne}$	17.22 s	β^{+}	neon-19
${ }^{32} \mathrm{P}$	14.28 d	β	phosphorus-32
${ }^{239} \mathrm{Pu}$	$2.410 \times 10^{4} \mathrm{y}$	α	plutonium-239
${ }^{226} \mathrm{Ra}$	1599 y	α	radium-226
${ }^{222} \mathrm{Rn}$	3.823 d	α	radon-222
${ }^{90} \mathrm{Sr}$	29.1 y	β^{-}	strontium-90
${ }^{99} \mathrm{Tc}$	$2.13 \times 10^{5} \mathrm{y}$	β^{-}	technetium-99
${ }^{232} \mathrm{Th}$	$1.40 \times 10^{10} \mathrm{y}$	a	thorium-232
${ }^{23,3} \mathrm{U}$	$1.592 \times 10^{5} \mathrm{y}$	α	uranium-233
${ }^{235} \mathrm{U}$	$7.04 \times 10^{8} \mathrm{y}$	a	uranium-235
${ }^{238} \mathrm{U}$	$4.47 \times 10^{9} \mathrm{y}$	α	uranium-238

Source: CRC Handbook of Chemistry and Physics, 91 ${ }^{\text {st }}$ ed., 2010-2011, CRC Press

Table O
Symbols Used in Nuclear Chemistry

Name	Notation	Symbol
alpha particle	${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$	α
beta particle	${ }_{-1}^{0} \mathrm{e}$ or ${ }_{-1}^{0} \beta$	β^{-}
gamma radiation	$0_{0} \gamma$	γ
nentron	$0_{0}^{1} \mathrm{n}$	n
proton	${ }_{1}^{1} \mathrm{H}$ or ${ }_{1}^{1} \mathrm{p}$	p
positron	0 +1 e^{1} or ${ }_{+1}^{0} \beta$	β^{+}

Table P
Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Table Q
Homologous Series of Hydrocarbons

Name	General Formula	Examples	
		Name	Structural Formula
alkanes	$\mathrm{C}_{n} \mathrm{H}_{2 n+2}$	ethane	
alkenes	$\mathrm{C}_{n} \mathrm{H}_{2 n}$	ethene	
alkynes	$\mathrm{C}_{n} \mathrm{H}_{2 n-2}$	ethyne	$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

Table R
Organic Functional Groups

Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	-F (fluoro-) - Cl (chloro-) -Br (bromo-) - I (iodo-)	$R-X$ (X represents any halogen)	$\mathrm{CH}_{3} \mathrm{CHClCH}_{3}$ 2-chloropropane
alcohol	- OH	R-OH	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ 1-propanol
ether	- $\mathrm{O}-$	$R-O-R^{\prime}$	$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ methyl ethyl ether
aldehyde			 propanal
ketone			 2-pentanone
organic acid			 propanoic acid
ester			
amine	$-\stackrel{1}{\mathrm{~N}}-$		$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ 1-propanamine
amide			

Note: R represents a bonded atom or group of atoms.

* denotes the presence of (2-8-) for elements 72 and above

Source: CRC Handbook of Chemistry and Physics, 91st ed., 2010-2011, CRC Press
Properties of Selected Elements

		1上86気						
$\frac{E 0}{E} E$			Eg	\cdots			¢	
		cock		$\cos _{\substack{\text { cos }}}^{\infty}$		$\stackrel{\infty}{C O O}$		
	$\underset{\sim}{\text { No }} \mathfrak{N}$			8당궁				
$\stackrel{y y}{\ddot{Z}}$			(
		UZOエ受		いてそッヂ	ジー－¢	込行		シベがさ
		－Mososo	二穴宗ざ边		ลงำ＊＊＊		－	creme

Atomic Number	Symbol	Name	First Ionization Energy ($\mathrm{kJ} / \mathrm{mol}$)	Electronegativity	Melting Point (K)	Boiling* Point (K)	$\begin{gathered} \text { Density** } \\ \left(\mathrm{g} / \mathrm{cm}^{3}\right) \end{gathered}$	Atomic Radius (pm)
41	Nb	niobium	652	1.6	2750.	5017	8.57	156
42	Mo	molybdenum	684	2.2	2896	4912	10.2	146
43	Tc	technetium	702	2.1	2430.	4538	11	138
44	Ru	ruthenium	710.	2.2	2606	4423	12.1	136
45	Rh	rhodium	720.	2.3	2237	3968	12.4	134
46	Pd	palladium	804	2.2	1828	3236	12.0	130.
47	Ag	silver	731	1.9	1235	2435	10.5	136
48	Cd	cadmium	868	1.7	594	1040.	8.69	140.
49	In	indium	558	1.8	430.	2345	7.31	142
50	Sn	tin (white)	709	2.0	505	2875	7.287	140.
51	Sb	antimony (gray)	831	2.1	904	1860.	6.68	140.
52	Te	tellurium	869	2.1	723	1261	6.232	137
53	I	iodine	1008	2.7	387	457	4.933	136
54	Xe	xenon	1170.	2.6	161	165	0.005366	136
55	Cs	cesium	376	0.8	302	944	1.873	238
56	Ba	barium	503	0.9	1000.	2170.	3.62	206
57	La	lanthanum	538	1.1	1193	3737	6.15	194
Elements 58-71 have been omitted.								
72	Hf	hafnium	659	1.3	2506	4876	13.3	164
73	Ta	tantalum	728	1.5	3290.	5731	16.4	158
74	W	tungsten	759	1.7	3695	5828	19.3	150.
75	Re	rhenium	756	1.9	3458	5869	20.8	141
76	Os	osmium	814	2.2	3306	5285	22.587	136
77	Ir	iridium	865	2.2	2719	4701	22.562	132
78	Pt	platinum	864	2.2	2041	4098	21.5	130.
79	Au	gold	890.	2.4	1337	3129	19.3	130.
80	Hg	mercury	1007	1.9	234	630.	13.5336	132
81	Tl	thallium	589	1.8	577	1746	11.8	144
82	Pb	lead	716	1.8	600.	2022	11.3	145
83	Bi	bismuth	703	1.9	544	1837	9.79	150.
84	Po	polonium	812	2.0	527	1235	9.20	142
85	At	astatine	-	2.2	575			148
86	Rn	radon	1037	-	202	211	0.009074	146
87	Fr	francium	393	0.7	300.	,	,	242
88	Ra	radium	509	0.9	969	$\overline{7}$	5	211
89	Ac	actinium	499	1.1	1323	3471	10.	201
Elements 90 and above have been omitted.								

[^1]
Table T
 Important Formulas and Equations

Density	$d=\frac{m}{V} \quad \begin{aligned} d & =\text { density } \\ m & =\text { mass } \\ V & =\text { volume } \end{aligned}$
Mole Calculations	$\text { number of moles }=\frac{\text { given mass }}{\text { gram-formula mass }}$
Percent Error	$\% \text { error }=\frac{\text { measured value }- \text { accepted value }}{\text { accepted value }} \times 100$
Percent Composition	$\% \text { composition by mass }=\frac{\text { mass of part }}{\text { mass of whole }} \times 100$
Concentration	$\text { parts per million }=\frac{\text { mass of solute }}{\text { mass of solution }} \times 1000000$
	$\text { molarity }=\frac{\text { moles of solute }}{\text { liter of solution }}$
Combined Gas Law	$\begin{array}{ll} \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} & \begin{array}{l} P=\text { pressure } \\ V \end{array}=\text { volume } \\ T & =\text { temperature } \end{array}$
Titration	$\begin{array}{ccc} M_{A}=\text { molarity of } \mathrm{H}^{+} & M_{B}=\text { molarity of } \mathrm{OH}^{-} \\ V_{A}=M_{B} V_{B} & V_{A}=\text { volume of acid } & V_{B}=\text { volume of base } \end{array}$
Heat	q $=m C \wedge T$ q $=$ heat m q $=m I_{f}$ H_{f} $=$ heat of fusion q $=m I_{i}$ C $=$ specific heat capacity $\wedge T$ $=$ change in temperature
Temperature	$\mathrm{K}={ }^{\circ} \mathrm{C}+273 \quad \begin{aligned} \mathrm{K} & =\text { kelvin } \\ { }^{\circ} \mathrm{C} & =\text { degree Celsius } \end{aligned}$

Absolute Zero (9)
0 K or $-273^{\circ} \mathrm{C}$; the temperature at which all molecular movements stop.

Accelerator

a device which gives charged particles sufficient kinetic energy to penetrate the nucleus.
Acid, Arrhenius
$(141,142)$
a substance that produces H^{+}(hydrogen ion, proton) or $\mathrm{H}_{3} \mathrm{O}^{+}$(hydronium) ion as the only positive ion in solutions.
Acid, Alternate Theory (143)
a substance that donates $\mathrm{H}+$ (hydrogen ion, proton) in acid-base reactions.
Activation energy
(154)
minimal amount of energy needed to start a reaction.

Addition reaction $(193,194)$

organic reaction that involves the adding of hydrogen atoms (or halogen atoms) to a double or a triple bond.

Addition polymerization

$(193,196)$
the joining of monomers (small unit molecules) with double bonds to form a polymer (a larger unit) molecule.
Alcohol
(184)
an organic compound containing the hydroxyl group (-OH) as the functional group.
Aldehyde
(186)

O
II
an organic compound containing the $-\mathrm{C}-\mathrm{H}$ as the functional group.

Alkali metal

(36)
an element in Group 1 of the Periodic Table.
Alkaline Earth metal
an element in Group 2 of the Periodic Table.
Alkane
$(180,181)$
a saturated hydrocarbon with all single bonds and general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$
Alkene
$(180,181)$
an unsaturated hydrocarbon with a double bond and general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n}$
Alkyl group
(190)
a hydrocarbon group (found as a side chain) that contains one less H atom than an alkane with the same number of C atoms.
Alkyne
$(180,183)$
an unsaturated hydrocarbon with a triple (\equiv) bond and general formula of $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
Allotropes
(43)
two or more different forms of the same element that have different formulas, structures, and properties.
Alloy
a homogeneous mixture of a metal with another element (often another metal.)
Alpha decay (226)
a nuclear decay that releases an alpha particle.
Alpha particle
(223)
a helium nucleus, ${ }_{2}^{4} \mathrm{He}$
Amide
(88)
an organic compound formed from a reaction of an organic acid with an amine.
Amine
(188)

I
an organic compound that has $-\mathrm{N}-$ (nitrogen) as its functional group.

Surviving Chemistry Guided Study Book

Over 400 Sets of

Organilied and Engaging Guided Readling and Practice Questions

13 Topics of High School Chemistry

Concept-by-concept coverage for easier learning
Clear, \& easy-to-understand explanations of each concept
Several example problems with step-by-step solutions
Practice question set side-by-side with guided notes
Up to 90 practice questions per topic
16 Days of Question Sets for Regents and Final Exam Practice
Practice Regents Exams included

More Books on
 SurvivingChem.com

E3 Scholastic Publishing (877) 224 - 0484
 info@e3chemistry.com

[^0]: Source: The Merck Index, $14^{\text {th }}$ ed., 2006, Merck Publishing Group

[^1]: *boiling point at standard pressure
 ** density of solids and liquids at room temperature and density of gases at 298 K and 101.3 kPa - no data available

 Source: CRC Handbook for Chemistry and Physics, $91^{\text {st }}$ ed., 2010-2011, CRC Press

